
Nexthink V6.15

API and Integrations

Generated: 3/27/2020 9:24 am

Copyright Nexthink, Inc. All Rights Reserved

Table of Contents
Integrating with Nexthink..1

Overview..1
Getting data through the Web API...1
Bidirectional integration with the Finder...2
Triggering remote actions via their API..13
Integrating investigation-based alerts..16
Downloads...22

Web API V2 and NXQL...23
Introducing the Web API V2...23
NXQL Tutorial..28
NXQL language definition..42
NXQL Data Model..48

Web API V1 (deprecated)..110
Publishing an investigation...110
The URL of Web API investigations...111
Processing the response of Web API investigations..............................112

Examples and tools...115
Excel integration with NXQL..115
Integrating with SCCM...115
Integrating with ServiceNow...116
Integrating with HP ArcSight..117

i

Integrating with Nexthink

Overview

Nexthink collects and processes a great deal of information coming from your IT
infrastructure. Nexthink is able to monitor, including but not limited to, the
configurations, program installations, application executions, user interactions,
network connections, printer usage and system failures of the machines inside
your corporate network. In this way, Nexthink provides you an end-user
perspective of what is going on inside your IT infrastructure. This data is highly
valuable to any IT department. However, IT departments typically do not use just
one tool, but multiple tools for different purposes. The ability to combine the
available tools in a convenient way is a key factor to the efficiency of your IT
department.

Hereby we explain the built-in mechanisms of Nexthink to interact and share data
with third-party tools by means of standard protocols and common interchange
formats. Your IT team will then be enabled to build full-blown IT solutions by
taking advantage of the monitoring capabilities of Nexthink and integrating them
with the third-party software of your choice.

Getting data through the Web API

Overview of the Web API

The Web API is the main interface that Nexthink offers for integrating Nexthink
data with external information systems. While Finder investigations provide a
user with the means to query the Nexthink database, investigations are not well
adapted to be launched and processed by external programs. The Web API fills
this gap by offering third-party applications a standard programming interface to
query the Nexthink database. The Engine implements the Web API as a RESTful
web service over HTTPS. As such, the Web API can accept requests from any
external application that supports the HTTP protocol over TLS/SSL (HTTPS).
The default port for connecting to the Web API is 1671. Since the Web API uses
well-established Internet protocols for communicating with external applications,
many tools support them directly. Information systems such as Configuration
Management Databases or Issue Tracking Systems are typically able to access
RESTful web services. These systems can quickly benefit from the integration of
Nexthink data by querying the Web API.

1

Starting from Nexthink V5.3, the Web API comes in two flavors:

Web API V2
The newest and most flexible version of the Web API. Build advanced
queries using NXQL, the Nexthink Query Language, to satisfy your most
demanding integration needs. Send queries using either the GET or POST
methods of the HTTPS protocol and receive the results of your queries in
the format of your choice: XML, JSON, HTML or CSV.

Web API V1 (deprecated)
The simple way to turn your Finder investigations into web-accessible
queries. Build and publish your queries visually with the tools provided by
the Finder. Access to those queries using the GET method of the HTTPS
protocol and get results in XML format.

Prerequisites

In order for the protocols of the Web API to work, set the External DNS name of
the Engine to an appropriate value.

If your Engine is behind a Firewall, remember to open access to the default TCP
port for the Web API (1671), or to the port number that you have configured
instead.

Related tasks

Introducing the Web API V2•
NXQL Tutorial•
Publishing an investigation (Web API V1)•
Setting the names of the Engines•

Bidirectional integration with the Finder

Overview

The Finder is a user-friendly graphical interface to the Nexthink database. As
such, the integration with the Finder is not based on sharing data with external
applications (the Web API already covers that part), but on interacting with other
applications. The Finder can be launched from external tools in an automated
way and it is capable of triggering specific actions on external applications as
well. The Finder interacts with other applications by means of the nxt application
protocol and custom actions.

2

The nxt application protocol

The nxt application protocol provides you with the means to launch the Finder
and perform some specific actions on it by just stating a URL. The Finder
registers the nxt protocol in Windows during its installation. From that point on,
Windows recognizes the URI scheme nxt, associating it to the Finder application.
You can embed nxt URLs as hyperlinks in HTML web pages, use them directly
in the address bar of your web browser, or launch them from the Run dialog box
of Windows.

There are seven types of actions that the Finder can handle when called from an
nxt URL:

Open a new Finder.•
Display the device view.•
Display the user view.•
Display the service view.•
Edit a metric.•
Edit a category.•
Launch an arbitrary investigation.•

The nxt protocol offers a mechanism to specify both the Portal and the Engine to
which the Finder must connect, as well as the name of the Finder user for the
connection.

Open a new Finder

The simplest action that can be triggered with the nxt protocol is to open a new
instance of the Finder:

nxt://New-NxFinder

Display the Device View

This command of the nxt protocol opens the device view of a particular device.
Identify the device either by its name, its last known IP address, or its ID (the
internal Nexthink identifier).

nxt://Show-NxSource?Name=SOURCE_NAME

nxt://Show-NxSource?IpAddress=SOURCE_LAST_IP_ADDRESS

nxt://Show-NxSource?Id=SOURCE_ID

3

By default, the Device View displays the last 24 hours of the device. Optionally,
specify a different range of dates for the Device View with the parameters
StartDate and EndDate:

nxt://Show-NxSource?Name=SOURCE_NAME&StartDate=START_DATE&EndDate=END_DATE

The dates must be expressed in the UTC time zone with the format:
YYYY-MM-JJThh:mm. For example: 2016-04-04T12:00. The time span between
the StartDate and the EndDate must be strictly smaller than 7 days.

Display the User View

Use this command to open the user view of a particular user in the Finder.
Identify users by their name:

nxt://Show-NxUser?Name=USER_NAME

By default, the User View displays the last 24 hours of the user. Optionally,
specify a different range of dates in the same way as explained for the Device
View above.

Display the Service View

The following command of the nxt protocol lets you open the service view for a
given service in the Finder:

nxt://Show-NxService?name=SERVICE_NAME

Replace SERVICE_NAME by the actual name of the service that you want to
monitor, paying attention to capital letters because this argument is case
sensitive.

Edit a metric

To open the Finder for editing a particular metric, build a nxt protocol URL with
the following command and provide the name of the metric as parameter:

nxt://Edit-NxMetric?Name=METRIC_NAME

Note that the names of metrics are case sensitive.

4

Edit a category

To open the Finder for editing a particular category, build a nxt protocol URL with
the following command:

nxt://Edit-NxCategory?Name=CATEGORY_NAME&Type=CATEGORY_TYPE

Replace CATEGORY_NAME by the name of the category that you want to edit
and CATEGORY_TYPE by the type of object to which the category applies:
application, binary, destination, device, domain, executable, package, port,
printer, or user.

Launch an investigation

Using the nxt protocol, you may also run an arbitrary investigation in the Finder.
The command that you need to use for launching an investigation is the
following:

nxt://Run-NxInvestigation?Encoding=ENCODING_FORMAT&InvestigationXml=INVESTIGATION_XML

The investigation is specified in XML format. You can get the XML representation
of an investigation from the Finder by right-clicking the name of the investigation
and selecting the option Export. You may then choose to export the investigation
to the clipboard or to a file. In any case, you get the investigation in its XML form.

Note that the XML of an investigation contains special characters that are not
supported by URLs. Solve by properly encoding the investigation by setting the
parameter Encoding to Url or Base64 (see the section Encoding the arguments
of an nxt URL). Find below the same investigation encoded in the two formats.
Note that parameters are encoded.

Example of Url encoding:

nxt://Run-NxInvestigation?Encoding=Url&Host=192.168.5.5&Port=443&
InvestigationXml=%3C%3Fxml%20version%3D%221.0%22%20encoding%3D%22utf-16
%22%3F%3E%3CInvestigation%20xmlns%3Axsi%3D%22http%3A%2F%2Fwww.w3.org
%2F2001%2FXMLSchema-Instance%22%20xmlns%3Axsd%3D%22http%3A%2F%2Fwww.w3.org
%2F2001%2FXMLSchema%22%20DataModelVersion%3D%228%22%20SyntaxVersion%3D%22
2%22%3E%3CLabel%3Etest%3C%2FLabel%3E%3CObject%3Esource%3C%2FObject%3E%3C
Description%20%2F%3E%3CFieldList%3E%3Cstring%3Ename%3C%2Fstring%3E%3C%2F
FieldList%3E%3CCategoryList%20%2F%3E%3CAggregateList%20%2F%3E%3C
ObjectConditionList%20%2F%3E%3C%2FInvestigation%3E

Example of Base64 encoding:

5

nxt://Run-NxInvestigation?Encoding=Base64&Host=MTkyLjE2OC41LjU=&Port=NDQz&
InvestigationXml=PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0idXRmLTE2Ij8+PEludmVzdGl
nYXRpb24geG1sbnM6eHNpPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1JbnN0YW5jZSI
geG1sbnM6eHNkPSJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYSIgRGF0YU1vZGVsVmVyc2l
vbj0iOCIgU3ludGF4VmVyc2lvbj0iMiI+PExhYmVsPnRlc3Q8L0xhYmVsPjxPYmplY3Q+c291cmNlPC9
PYmplY3Q+PERlc2NyaXB0aW9uIC8+PEZpZWxkTGlzdD48c3RyaW5nPm5hbWU8L3N0cmluZz48L0ZpZWx
kTGlzdD48Q2F0ZWdvcnlMaXN0IC8+PEFnZ3JlZ2F0ZUxpc3QgLz48T2JqZWN0Q29uZGl0aW9uTGlzdCA
vPjwvSW52ZXN0aWdhdGlvbj4=

Note that, for the links to fit the page width, the examples above include line
breaks. To test them, remove the line breaks when copying the URLs or copy the
links from the following web page:

NXT protocol test•

Establishing the connection

If you do not provide connection details to the nxt protocol, the Finder either
executes the action in the context of the current session (if a running Finder is
available with a session already established), or asks the user to open a new
session (by displaying the login dialog) and then executes the action.

Alternatively, state the connection details as parameters in the URI:

Host
The DNS name or IP address of the Portal.

Port
The port number where the Portal listens at Finder connections (443 by
default).

UserName (optional)
The name of the Finder user to impersonate for the connection.

EngineName (optional)
The name of the Engine to select.

The Finder opens the first session that matches the connection details. If you do
not provide an Engine name, the Finder displays the Engine selection dialog
(unless there is only one Engine or the user has a favorite Engine). If you do not
provide the user name, the Finder opens the first matching session regardless of
whom the user is.

For instance, to open the device view on a particular connection:
nxt://Show-NxSource?Name=SOURCE_NAME&Host=PORTAL_ADDRESS&Port=PORT_NUMBER&UserName=USER&EngineName=ENGINE

6

For backwards compatibility with V5, you can supply a session name to the nxt
protocol in place of the connection details. Note however that, in V6, a session
defines a connection between the Finder and a Portal; whereas in V5, a session
defines a connection between the Finder and an Engine. Therefore, in a
multi-Engine V6 setup, specifying the session name may not be enough to
completely describe the connection: the Finder knows about the targeted Portal,
but not about the Engine. In that case, the Finder usually displays the Engine
selection dialog. Only if the user has a favorite Engine for the session (or in
single Engine setups), the Finder skips the Engine selection step. Thus, the
parameter SessionName is deprecated in V6.

To open a device view from a particular session, write the following URI:
nxt://Show-NxSource?Name=SOURCE_NAME&SessionName=SESSION_NAME

To prevent the Finder from asking for user credentials, use those sessions or
connection details for which you have saved the password. Alternatively, if you
have enabled Windows authentication in your setup, you can instruct the nxt
protocol to use it by setting the parameter UseSso to true:
nxt://Show-NxSource?Name=SOURCE_NAME&Host=PORTAL_ADDRESS&Port=PORT_NUMBER&UseSso=true

When using Windows authentication, keep in mind that the Portal address must
be a proper DNS name and not an IP address.

Creating nxt protocol links from the Finder

Nxt protocol links are very useful, for instance, in dashboard descriptions to offer
the possibility of configuring a dashboard (edit related metrics or categories), or
simply to complete the dashboard with complementary information displayed in
the Finder. Writing a link for the nxt protocol, however, may be a cumbersome
task, specially when you need to encode an investigation. To make this task
easier for you, it is possible to create nxt protocol links for some actions directly
from the Finder.

Generate nxt protocol links from the Finder for the following actions:

Launch an investigation•
Edit a category•
Edit a metric•
Display the service view•

To easily create nxt protocol links from the Finder:

7

Right-click the name of an investigation, category, metric, or investigation
in the left-hand side accordion menu.

1.

Select Export from the context menu. Depending on the kind of item that
you right-clicked, select:

Run investigation URL to clipboard, if you chose an
investigation. When the resulting URL is longer than 2083
characters, the Finder displays a message to warn you that some
browsers might not support this kind of link (see the limitations of
the nxt protocol).

♦

Edit category URL to clipboard, if you chose a category.♦
Edit metric URL to clipboard, if you chose a metric.♦
View service URL to clipboard, if you chose a service.♦

2.

Paste the URL from the clipboard and share it in a web page, email, or
dashboard description.

3.

Limitations of the nxt protocol

Investigations in XML form can be quite verbose. The more conditions you add to
an investigation, the longer the XML becomes. However, the maximum
supported length for an nxt URL is limited to 2083 characters. Therefore, you
may not be able to use this method to launch complex investigations.

Note that the limit in the number of characters of a URL can be even more
restrictive depending on the browser that you use to launch the request. For
instance, Internet Explorer supports a maximum of 507 characters.

Encoding the arguments of an nxt URL

In the case that the arguments of an nxt URL contain special characters which
are not supported by URLs, you may encode them using Base64 or URL
(percent) encoding. In order to specify the encoding method, you must include an
additional Encoding argument as the first argument of the nxt URL. This
argument can take either one of two values: Base64 or Url. Please note that
once you have chosen an encoding method, all the arguments of the URL must
be encoded using that method. It is not possible to mix different encoding
methods in the same nxt URL.

Base64 encoding

Whenever possible, it is recommended to use Base64 encoding for nxt URLs, as
it is more robust. This method prevents double enconding or double decoding
scenarios that may appear with URL encoding. The disadvantage of this method
is that arguments become unreadable to humans. For example, the folowing

8

URL instructs the Finder to display a device with id 12:

nxt://Show-NxSource?Encoding=Base64&Id=MTI=

URL encoding

URL encoding is a simple alternative to Base64 encoding that ensures support
for limited scenarios. URL encoding can be used for instance when one of the
arguments contains a space character. Some browsers in fact automatically
encode a space in a URL as "%20". The following hyperlink:

My link

when invoked from such browsers is translated into:

nxt://Show-NxSource?Name=Work%20PC1

with the consequence that, if no encoding is specified, the system will look for a
device with name Work%20PC1 instead of Work PC1. The following example
shows how to correct such an issue using URL encoding:

My link

Information levels

Finder sessions are bound to Finder user accounts. Depending on the
information level of the user account that is bound to a given session, you may or
may not be able to perform a particular query to the Engine using the nxt
protocol. As a guideline, the following table shows the variants of the
Show-NxSource command which are available depending on the information
level of the Finder account that the session provided is using to connect to the
Engine.

Testing and debugging nxt protocol invocations

When invoking a malformed nxt URL with a wrong command, argument or
encoding, the nxt protocol handler terminates silently without displaying any error
message. During integration, however, it is useful to have some feedback and

9

know why an invocation failed. A possibility is to attach a trace listener to the
protocol handler.

Create a file named Nexthink.Finder.PowerShell.exe.config with the content
below and save it to the folder where the Nexthink.Finder.Powershell.exe file is
found (the Integration directory under the installation directory of the Finder):

<?xml version="1.0"?>
<configuration>
 <system.diagnostics>
 <trace autoflush="true" indentsize="4">
 <listeners>
 <add name="FileListener"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="DESTINATION_FILE" />
 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

where DESTINATION_FILE is the full path of the log file where trace information
will be saved (for instance, c:\log\Finder_Launcher.log).

Custom actions

Custom actions let the user launch external operations from the Finder. In that
sense, custom actions are complementary to the nxt application protocol, which
consists on automating the Finder from external applications.

Custom actions are applied within the context of an object, an activity, or an
event. Note that, when defining custom actions, any of these items is named the
object of the action. Therefore, the object of a custom action can be not only a
device, a user, a printer... but also a connection, an execution, or a device
warning. A custom action object is thus anything on which we can set an
investigation. In addition to specifying an object, a custom action requires the
user to specify an attribute or a category of the object. The value of the attribute
may later be used as an argument to the custom action.

There are three types of custom actions available:

Open a URL1.
Run a command in the Command Prompt2.
Run an external program3.

10

The Finder stores custom actions locally in the machine where the Finder was
installed. Therefore, your set of defined custom actions will always be available
independently of the Engine that you are connecting to. You may also export
your set of custom actions in order to share them among different Finder
installations.

Default custom actions

Nexthink Finder comes with a default set of useful custom actions. With the
default custom actions, you can ping a machine, open remote desktop
connections, or look up for information about processes, ports and IPs in
well-known web sites. Set of default custom actions.

User-defined custom actions

You may extend the set of contextual actions available by defining your own
custom actions. As an example, we are going to create a custom action for the
user object, so we can automatically send a mail to a specific user. We start by
opening the set of available custom actions by clicking on the Tools option in the
menu and then selecting Custom actions....

If this is the first custom action that you create, you will see the same set of
default actions that we saw in the previous chapter. We just clik on New? and a
dialog for creating our new custom action will appear. We fill in the dialog with the
following values:

11

The percent character "%" is replaced at the execution of the custom action by
the attribute that we selected. In this case, the name of the user will replace
the % character. If you need to write a % character in the command that you do
not want to be replaced, use a double percent: %%. Please note that this is a
simplified example and that we are assuming that we can directly assemble the
email address of a user just by concatenating the name of the user and the name
of the company. We have used the Open URL action together with the mailto
scheme in order for the system to launch your default email composer when the
action is executed.

Custom actions can be applied to one or several objects at the same time. When
editing a custom action, we can decide if we want the action to be applied
separately to each one of the objects selected or if we want to execute the action
over all of the selected objects at once.

This option can be set by clicking on the Advanced section of the edit dialog of a
custom action. In our case, since we have selected the default trigger multiple
actions, when multiple users are selected an email will be sent separately to
each one of the users. If trigger a single action is selected, the ?%? character will
be substituted for the concatenated attribute values of all the objects selected
and the action will be executed only once. You may specify as well a value
delimiter to separate each one of the attribute values. By default, the delimiter
character is the semicolon ?;?.

When triggering a single action for multiple objects, the concatenation of many
attribute values may yield a very long chain of characters to substitute the ?%?
sign. If your action consists on running a command based on a very long
parameter, you may run out of space in the command line. In order to overcome
this limitation, there is an additional option in the Finder (starting from version
4.3.3) which lets you save the concatenated parameter in a temporary file.

Thus, only the path of the temporary file replaces the placeholder ?%?, as in the
following example.

12

Executing custom actions

You can invoke custom actions from the context menu of an object or a set of
objects. You can select the objects either from the List result of an investigation
or from the Network activity or Local activity views. Note that the Network activity
and Local activity views may or may not be available depending on the specific
kind of object.

Exporting data from the Finder

The Finder also includes a way to share data with external applications through
the clipboard. The results of an investigation may be partially or entirely copied to
the clipboard. You just have to right click on the selected objects and choose the
option Copy rows. Then you may paste the contents of the clipboard into your
favourite spreadsheet application.

Instead of copying the whole rows of your selection, you may just copy to the
clipboard the value of the attribute which is below the mouse cursor when you do
the right-click. In the example above, the context menu shows that you can copy
the name of the first computer. Since this method requires user intervention, it is
not adapted to be automated. As we said above, if you regularly need to query
the Nexthink database from an external application, the Web API is the
recommended methodology.

Triggering remote actions via their API

Overview

The API of Nexthink Act makes possible to trigger remote actions
programmatically, enabling their integration with third-party products such as

13

self-service portals or ticketing systems.

The API of remote actions is exposed by the Portal as a REST API.

Applies to platforms:
Prerequisites

For a remote action to be triggered through the Act API, the following
prerequisites apply:

The remote action can be manually triggered.•
The remote action is triggered on behalf of a user whose profile includes
Finder access with the option Allow API of remote actions ticked.

•

Calling the Act API

The Portal exposes the Act API as a REST API under the URL:

https://[portal.company.com]/api/remoteaction/v1/run

In the URL, substitute [portal.company.com] for the external DNS name of
your Portal.

To trigger a remote action, submit a POST request to the URL of the API (note
that GET requests are not supported, returning a 404 error) with a JSON payload
containing two parameters:

Name Description

RemoteActionUid Identifier of the remote action

DeviceUids List of device identifiers

Example of the JSON payload of a request to the API of remote actions:

{
 "RemoteActionUid": "b21b9377-3624-4046-8378-76244657d2d4",
 "DeviceUids" :
["da581fd269e0bc4c03b767a345fbf5d3","fa623653cd663e19a58d69519471bbef"]
}

The call is dispatched to all the Engines connected to the Portal and executed
asynchronously, meaning that it returns immediately after the request has been
validated. A successful response from the Portal does not guarantee the

14

execution of the remote action on the selected devices. For unsuccessful
responses, see the list of error conditions below.

Obtaining the UIDs of remote actions and devices

To get the UID of a remote action:

Log in to the Finder as a user with the permission to edit remote actions.1.
Locate the desired remote action under the Remote actions section of
the left-hand side menu.

2.

Right-click the remote action name.3.
Select Export > Remote action to clipboard.4.
Open your favorite XML or plain text editor.5.
Press Ctrl+V to paste the contents of the clipboard on the editor.6.
Find the UID attribute of the Action element in the XML of the remote
action.

7.

Find the UIDs of the devices through either:

The Finder: Display field UID of the device object.•
NXQL: Retrieve the device_uid field of the device objects, for instance:

(select device_uid (from device))
•

HTTP headers

Send your POST request to the API of remote actions with the following HTTP
headers to specify JSON content and basic authentication:

Content-type: application/json
Authorization: Basic [base-64(user:password)]

Replace [base-64(user:password)] with the credentials (in base-64
encoding) of a Nexthink user who has the right to access the API of remote
actions.

Error conditions

In response to a request, the Portal may send one of the following answers when
something is wrong with the request:

Error type HTTP code Cause
Access
Denied

Unauthorized 401

Authentication error•

15

Forbidden 403 User with insufficient permissions to run
the specified remote action

•

Validation
error

Bad request 400

Invalid JSON•
Invalid encoding•
Invalid Content-type•
Invalid or missing UID of remote action•
Invalid or missing UIDs of devices•
Unknown or disabled remote action•
Manual execution of remote action not
allowed

•

Too many device UIDs specified (limit of
12 000)

•

Unknown
error

Internal server
error 500 Undefined internal error•

Related tasks

Triggering a remote action manually•

Integrating investigation-based alerts

Overview

In this section, learn about the notifications generated by investigation-based
alerts to integrate them with other systems.

Investigation-based alerts return a set of objects matching the specified
conditions either immediately or periodically, sending the result via email or, in
the case of global alerts, optionally via the system log.

Create and configure an investigation-based alert using the Finder. The account
used to create the alert has an influence on the mechanisms to notify it. If the
account is properly configured with a valid email address, alerts associated with
that account will send emails to the configured address. In addition to the
configured email address, you may specify other recipients of the alert email in
the dedicated space. If no email address has been configured for that particular
account, at least one recipient has to be manually specified in the dedicated
space.

16

Only those users with the appropriate profile setting (Allow system
configuration) can create global alerts. Global alerts can be sent via email, as
described above, and optionally via the system log.

Email integration of investigation-based alerts

Email is a proven, ubiquitous and mature technology, and thus a suitable means
to integrate alert info into third-party software. Email is also easy to automate,
since many programming languages have libraries available to send and receive
email by means of standard email protocols such as SMTP, IMAP or POP.

Investigation-based alerts are sent via email in HTML form, using the UTF-8
charset and base64 transfer encoding. The subject of the message consists of
the word Nexthink followed by a colon and then the name of the alert. The
message content is composed of two HTML tables preceded by an embedded
CSS snippet which defines the style of the two tables. The first HTML table
displays some general information about the alert, whereas the second HTML
table holds the result of the investigation associated to the alert, in the case of
investigation-based alerts. If an investigation-based alert fails to execute, a
message indicating the reason for the failure appears in the place of the results
of the corresponding investigation.

In addition to the HTML table with the results of the investigation, the email of an
investigation-based alert includes an attachment particularly well suited for
integration. This is a compressed Comma Separated Values (CSV) file that holds
the same results shown by the HTML, but in plain text. CSV files are understood
by a great number of different tools and they are very easy to parse
programmatically.

HTML info table

The HTML info table is composed of five fields which give general information
about the context of the alert:

Source: name of the Engine that generated the alert.•
User: name of the Finder account associated to the alert.•
Name: the name of the alert itself.•
Description: brief description of the alert, as displayed in the Finder.•
Time or Period: For non-periodic (system or immediate) alerts, the time at
which the alert was triggered is shown. In the case of periodic alerts, the
period for which the alert was computed is displayed. In both cases, the
time of the day or interval of time is expressed in the timezone of the
associated user. The name of the timezone is displayed right after the

•

17

corresponding time or period.

HTML results table

The results of an investigation-based alert are displayed in the form of a HTML
table whose first row holds the names of the fields that were selected during the
configuration of the alert. Up to a maximum of fifteen fields will be displayed in an
email of an alert. If more than fifteen fields were selected when editing the
investigation associated to the alert, only the first fifteen will appear in the email
and the rest will be discarded. The CSS included in the mail makes the first row
of the HTML results table to be highlighted, so the names of the selected fields
appear as the headers of each column. Each subsequent row holds the values of
the fields for every alerted object, that is, each row shows information about an
object which met the conditions specified by the alert. The maximum number of
alerted objects which can be displayed in the email of of an investigation-based
alert is 250 objects. Therefore, a HTML results table may have a maximum of
251 rows, including the first row with the names of the fields. If more than 250
objects are alerted, a brief warning at the end of the email indicates that only
partial results are shown.

Compressed CSV attachment

Although it is possible to parse the HTML results table for integrating its data into
external software, the HTML tables of Nexthink alerts were mostly designed to be
read by human beings. In addition to the HTML results table, however, the email
sent by investigation-based alerts includes a compressed text attachment which
is much more interesting for integration purposes. The attachment is a CSV file
compressed with the well known Lempel-Ziv LZ77 algorithm whose name is
always set to be "alert.zip". When uncompressed, the name of the file becomes
"alert.csv". This attachment holds the same data as the HTML results table, with
the advantage that its contents are easier to parse.

Once the attachment is uncompressed, the resulting CSV can be easily imported
into third-party tools such as your favourite spreadsheet program.

18

Syslog integration

The system logging service, or syslog for short, is an alternative to email for
integrating data coming from Nexthink alerts. Applications typically use the
syslog to store messages that keep track of the activity of the application itself or
that describe a situation that the application considers relevant. The syslog
service is responsible for receiving these messages, assigning them a
time-stamp and storing them in a timely manner.

In the Finder, you can select to send the results of a global investigation-based
alert to the system log. Please note however that only those accounts with the
right permissions are able to create global alerts.

Syslog configuration

The Nexthink appliance relies on the rsyslog package for writing to the system
log. Many Linux distributions use rsyslog as their default service for system
logging. If you are familiar with the configuration files of rsyslog, you may modify
the format of alerts and of the Engine logs in general. The format of the
configuration files of rsyslog is backwards compatible with the original syslog
daemon. From this point on, we may refer to rsyslog as syslog when we talk
about the service itself and not about a specific feature of rsyslog. The
configuration file for rsyslog is found in /etc/rsyslog.conf. For the sake of clarity,
the specific modifications of the Engine to the syslog configuration are stored in a
separate file which is found in /etc/nexthink/nx_rsyslog.conf. This file is applied to
the main configuration file by means of an include directive in /etc/rsyslog.conf.
The part of the syslog configuration file /etc/nexthink/nx_rsyslog.conf which is
relevant for alerts is shown below:

 $template
RFC5424format,"<%pri%>1 %timestamp:::date-rfc3339% %hostname%
 %programname% %procid%%msg%\n"
 ...
 # alerts
 local5.=notice -/var/log/nexthink/alert.log;
 ...
 # alerts
 local6.=notice -/var/log/nexthink/alert.log; RFC5424format

The first line defines an output format for syslog messages by means of a
template. The template is named RFC5424format because it follows the
recommended format for syslog messages which is described in the most recent

19

Internet standard about the syslog protocol: RFC 5424. The template defines the
output to be composed of a priority number followed by the timestamp, the host
name, the program name, the id of the process which issued the syslog message
and the message itself. Once defined in this way, a template can be applied to
one or several message filters. For alerts, you can see that we declare two filters
in the syslog configuration file, depending on the facility specified to log the alert.
Both filters are instructed to write their output to the same file:
/var/log/nexthink/alert.log. The minus sign before the file name is there to
improve the performance of the syslog daemon. It indicates that syslog output to
the file is buffered, so the syslog system will not directly write to the filesystem
but to a buffer in memory and then really write to the disk once the buffer is full.
The two filters however accept messages from different facilities. If the facility
used is local5, rsyslog will use the default syslog output format. On the other
hand, if the facility used is local6, rsyslog will use the output format defined by
the template ?RFC5424format? for every logged alert.

Alert format

We have seen that the format of an alert in the system log depends on the facility
used to log the alert: local5 for default format and local6 for RFC 5424 format.
The format of the message itself also depends on which facility is used by the
Engine to log the alert. You can control the facility used to log alerts by means of
a configuration parameter in the engine called legacy_alert_format in the syslog
tag of the configuration file:

<syslog>
 <legacy_alert_format>true</legacy_alert_format>
</syslog>

By default, the parameter is set to true in order to use the traditional alert format
for syslog. Facility local5 is used in this default case. When local5 is used, the
result of an alert is divided into two types of messages. The format of the first
message is composed of the name of the alert and the number of rows that
follow:

alert [n]

Then each row of the result is given in the following format:

alert | value1 | value2 | ? |

where alert is again the name of the alert as saved with the Finder and valueN is

20

the value that corresponds to the Nth field of the investigation associated to the
alert. The messages are preceded by the timestamp and the default values set
by syslog that depend on the default syslog configuration.

Example:

<default syslog prefix> Last IP alert [1]
<default syslog prefix> Last IP alert |QAXPRG|192.168.0.44|

You may edit the file /var/nexthink/engine/<engine_instance>/etc/nxengine.xml
manually to set the value of legacy alert format to false. If the value of this
parameter is set to false, facility local6 is used for logging Engine messages.
When local6 is used, the message generated for an alert combined with the
template defined in the syslog configuration file has the following output format:

<pri>version timestamp hostname NX pid object [engine *(field="value")] alert
[number/total]

where

pri: Priority of message. It is computed by first multiplying the number of
the facility that sent the message by 8 and then adding the severity. The
severity used by all log messages in the Engine is notice (5). Since the
facility used is local6 (22) for non-legacy alerts, the priority is <181>.

•

version: Version of syslog protocol. We use version 1.•
timestamp: High precision timestamp derived from RFC 3339.•
hostname: Qualified name of the machine at the origin of the log
message.

•

NX: This fixed value is the application name for the NEXThink Engine.•
pid: Process ID of the Engine in the host machine.•
object: Object category of the alarm investigation (e.g. source, user,
destination, etc).

•

engine: Name given to the Engine in the server tag of the configuration
file. Warning: this is not a valid SD-ID according to RFC 5424. We use it
as a convention, but it may change in the future.

•

field: Name of the object parameter to display.•
value: Value of the object parameter. The list of values is the actual result
of the investigation.

•

alert: Name of the alert as saved with the Finder.•
number/total: Number of the current row out of the total number of rows
in the investigation result.

•

21

Example: <181>1 2011-04-15T16:56:30.966693+02:00 Barahona NX 3286 source
[DebugEngine name="QAXPRG" last_ip_address="192.168.0.44"] Last IP
alert [1/1]

Known Limitations

In non-legacy alerts mode, the names of fields in the message of the logged
alerts may not exactly match the names of the fields which where specified in the
Finder when defining the alert. This is because the names used when generating
the alert are the internal names of the fields as declared in the code of the
Engine and not the names that you can see in the Finder. Usually, the two
names are very similar if not equal, but do not rely blindly on Finder names to
parse alert results in the system log. The result of a periodic alert in the syslog
does not specify the period for which the alert has been computed. Although the
timestamps can give you a hint on this period, they do not provide a definitive
answer.

The operations described in this article should only be performed by a Nexthink
Engineer or a Nexthink Certified Partner.

If you need help or assistance, please contact your Nexthink Certified Partner.

Related tasks

Receiving alerts•
Creating an investigation-based alert•
Configuring the system log•

Downloads

Download the examples from the previous chapters here.•

Get the Integration Technical Presentation from here. There is an
overview of why to integrate, integration hooks, success stories and
questions and answers.

•

22

Web API V2 and NXQL

Introducing the Web API V2

Overview

The Web API V2 is an HTTPS service that you invoke by issuing a POST or GET
HTTP request to the Engine via the URL:

https://<Engine IP address or DNS name>:<Web API port number>/2/query

The service consists in answering NXQL queries to the in-memory Engine
database with a list of records in the selected output format. By default, the Web
API port number is 1671.

A request expects the following parameters:

query
The NXQL query to execute.

platform
Specifies the target platform of the query. Should the query target multiple
platforms, supply the argument for as many platforms as required.
Supported platforms are windows, mac_os and mobile.

format
The expected output format. Available formats are csv, html, xml and
json.

hr
Optional: Boolean value that indicates whether the output should be
human readable. When true, numerical values in the response are
adapted to their best fitting units for better readability. The chosen units
are also displayed along with the values. Not used in the JSON output
format.

For instance, to execute the following NXQL query: (select (id name) (from
device))

Use the following Web API request:
https://192.168.2.3:1671/2/query?platform=windows&platform=mac_os&query=(select%20(id%20name)%20(from
device))&format=csv

23

The Engine returns the list of identifiers and names of all Windows and Mac OS
devices in CSV format.

Template Parameters

Extra parameters p1, p2, etc. can be added to the query to replace placeholders
%1, %2, etc. in the NXQL query. Use placeholders in place of the names of
custom fields, names of categories or literal values for parameterizing queries
that are used often.

For instance, the following NXQL query to look returns the name of all devices,
as well as their associated keyword from a category that you pass as a
parameter (select (name #%1) (from device))

Use the following Web API request to get the names of all devices and their
Location keyword:
https://<engine>:1671/2/query?query=(select%20(name%20%23%251)%20(from%20device))&p1=Location&format=csv

Authentication

Any account with Data Privacy set to none (full access) and the option Finder
access enabled can make use of the Web API. Otherwise, the Web API will
reject the credentials of the account. Moreover, only those users with the right to
edit categories can perform updates through NXQL queries.

User credentials are verified with basic HTTP authentication. For a given user,
the visibility and info levels are identical to those defined in their profile in the
Portal.

Modification of accounts

Note that any change that you make in the Portal to an account is not
immediately propagated to the Engine. The synchronization between Engine and
Portal can take up to five minutes.

In practice, that means that you can have some temporary inconsistencies
regarding the permissions of the accounts in Nexthink. For instance, if you
remove Finder access from an account by changing its profile to prevent it from
accessing the Web API, that account might still be able to query an Engine via
the Web API for a few minutes before synchronization takes place and its
credentials are invalidated.

24

HTTP Status Codes

The Web API V2 returns:

200 OK: If the request is successful;•
400 Bad Request: If the request is invalid;•
401 Not Authorized: If no credentials are provided or if they are not valid;•
403 forbidden: If Web API is not licensed.•

Examples of how to use the Web API

Testing the Web API V2 with the NXQL editor

The NXQL editor is a web-based user interface to the Web API V2. This useful
editor lets you test the queries that you will later use in your integration projects.
The NXQL editor is present in every Engine with the Integration tookit and you
can access it from your favorite web browser by typing in the following URL:

https://<Engine IP address or DNS name>:<Web API port
number>/2/editor/nxql_editor.html

To write a query in the NXQL editor:

Provide the user credentials. Type in the user name and password in the
two text input boxes at the top. The access rights of the user associated to
the supplied credentials apply to the query.

1.

Select the platforms that your query targets by ticking the appropriate
platform icons at the top right corner.

2.

Type in your NXQL query inside the big text region in the middle.
If your query includes any placeholder for template parameters,
specify the value of the parameters in the two text boxes below the
query. Editor queries may include up to two template parameters.

♦
3.

Optional: Tick Formatted to get a human readable output (see hr
parameter of Web API V2 requests above).

4.

Click Send.5.

25

Once you send your query, the editor displays the message Loading... while the
Engine is processing it. After a few seconds, depending on the speed of your
connection, the complexity of your query and the load on the Engine, the
response appears below the Send button in the same page of the NXQL editor:

Choose the maximum number of displayed rows with the Show x entries
picker.

•

Navigate through the result pages with the help of the buttons at the
bottom right.

•

Order the results by column in ascending or descending order by
repeatedly clicking the title of the column.

•

Click the Other formats options at the bottom left to get the results in
CSV, HTML, XML or JSON format.

•

Using the Web API V2 with wget

The Web API V2 can easily be invoked using the classic UNIX tool wget. For
instance, to retrieve the names of all devices in CSV format using wget, write the
following command:

26

> wget --quiet \
 --no-check-certificate \
 --user=admin --password=admin \
 --output-document devices.csv \
 'https://our-engine-dns-name:1671/2/query?
 query=(select%20(id%20name)(from%20device))%20&
 format=csv&
 platform=windows&platform=mac_os'

Using the Web API V2 with PowerShell

The Web API can be invoked using Windows PowerShell, however, since the
standard Invoke-WebRequest CmdLet does not support self-signed certificate,
you should use the CmdLet defined in the downloadable file
Code-For-Invoke-Nxql.ps1. After saving this script, load it into your PowerShell
environment. Make sure that your PowerShell execution policy is set to
unrestricted.

To load the script, type in the following in the PowerShell console:

. ./Code-For-Invoke-Nxql.ps1

To retrieve the list of names of all the devices of any platform in CSV format, for
example, execute the following command:

Invoke-Nxql -ServerName 192.168.2.3
 -UserName admin -UserPassword admin
 -Platform windows,mac_os
 -Query "(select (name) (from device))" > devices.csv

To get the full command line options, type in:

Invoke-Nxql -?

Related concepts

Platform•

27

NXQL Tutorial

Overview

The Nexthink Query Language (NXQL) is a language designed to query the
in-memory database of the Nexthink Engine via the Web API V2. The language
is loosely based on SQL, using similar keywords in its statements, but with a
LISP-like syntax.

NXQL is the evolution of the selector language (another pseudo-SQL internally
developed language). The Finder, the Portal and the Lua scripts running within
the embedded Lua interpreter of the Engine currently use the selector language
to query the Engine. Being specifically designed for integrations and with speed
improvements in mind, NXQL outperforms the selector language in many areas.
NXQL lets you write more complex queries and, since you have more control
over the object traversal, queries typically execute faster.

This tutorial is meant to guide you through the process of learning NXQL by
example. Follow the NXQL tutorial in the suggested order to get the most out of
it.

To execute the queries in the tutorial, use the NXQL editor that is available in
every Engine with the Integration toolkit module. The rest of the tutorial assumes
that you are authenticated in the NXQL editor with admin credentials, so you
have the access rights to see all available data (such as the name of computers
and users).

First queries

To get a list with the identifiers and the names of all available devices, enter the
following query:

(select (id name) (from device))

Note that the query starts with an opening parenthesis and ends with a closing
parenthesis. The number of opening and closing parentheses must be balanced
for the query to be well formed. To help you formulate your queries, the system
automatically adds missing parentheses at the end when needed. The query
starts with the keyword select and it is thereby called a select statement. The
select statement includes a list of the fields to be retrieved and a from clause
that specifies the table where the fields are found.

28

(select - select statement
 (id name) - list of fields
 (from device)) - queried table

Within a query, fields may contain wildcard characters. For instance, to get the
names and all the antivirus related fields of devices, type in the following query:

(select (name *antivirus*) (from device))

If you mistype the name of a field, the system signals the error and suggest as
alternative either the exact name of the field that you most probably mispelled or,
if no field exists whose name is close enough to the input, the complete list of
field names that you can use in that context.

To retrieve only a subset of the devices, filter the results by the value of some of
the fields. For example, to select the device named NXT-DV10 only, type in the
following query:

(select (name)
 (from device
 (where device
 (eq name (string "NXT-DV10")))))

Inside the from clause, the where clause keeps only those devices whose name
is equal to NXT-DV10. The first argument of a where clause is the table to which
the filter applies, and the second argument is the expression of the filter itself. A
filter is composed of an operation, followed by the name of a field and a typed
value. The possible operations are eq, ne, lt, le, gt and ge meaning equal, not
equal, less than, less or equal, greater than, and greater or equal, respectively.
The type of the value that must match the type of the field. Find the names and
the types of all the fields in the data model.

Logical-and operation

You can define a where clause for more than one filter. In this case, only those
objects matching all the filters are selected.

For instance, the following query returns the list of all devices running Windows 7
with no antivirus installed:

(select (name os_version_and_architecture number_of_antiviruses)
 (from device
 (where device
 (eq os_version_and_architecture (pattern "Windows 7*"))
 (eq number_of_antiviruses (enum 0)))))

29

Logical-or operation

On the other hand, if you want to retrieve objects that either match one set of
filters or another, you have to write two where clauses for the same kind of
object.

For instance, to retrieve the list of devices running Windows 7 or Windows 8 /
8.1, type the following query:

(select (name os_version_and_architecture number_of_antiviruses)
 (from device
 (where device
 (eq os_version_and_architecture (pattern "Windows 7*")))
 (where device
 (eq os_version_and_architecture (pattern "Windows 8*")))))

Remember that this is valid for where clauses on the same kind of object only.
When writing more advanced queries that set conditions on objects of different
tables, keep in mind that multiple where clauses on different kinds of objects
behave as a logical-and. Examples will follow below.

At this stage, you are already able to query any field of any object tables defined
by Nexthink. You may try with other objects different from device, such as user or
binary, to get more familiar with the NXQL.

Using Events

An event is an occurrence in your IT infrastruture that happens at a defined
moment in time. All events have a timestamp, therefore events can be ordered
by time. Events are at the core of Nexthink technology, being the basic
information units of the in-memory database. Depending on the kind of
occurrence that they describe, there are several types of events. Each type of
event is linked to a well-defined set of objects. For instance, connection events
are linked to user, device, binary, destination, and port objects.

The number of events in the database is usually several orders of magnitude
higher than the number of any other kind of object. While an object table like the
device table may contain from a few hundreds to ten thousand elements, the
event table may hold tens of millions of elements. For performance reasons, it is
important to keep this in mind when setting the time span of a query involving
events.

In your queries, you can use the event table in two ways:

30

Directly selecting those events that occur during a given time interval. For
instance, to retrieve the last 100 connection made by firefox.exe the last
day:

•

(select (start_time end_time incoming_traffic outgoing_traffic)
 (from connection
 (where binary (eq executable_name (pattern firefox.exe)))
 (between midnight-1d midnight))
 (limit 100)
 (order_by start_time desc))

Selecting those objects that are linked to events occurring during a given
time interval. For instance, retrieve all devices that used firefox.exe to
access the web yesterday:

•

(select (id name)
 (from device
 (with connection
 (where binary (eq executable_name (pattern firefox.exe)))
 (between midnight-1d midnight))))

While the former query is similar to queries made so far, the latter introduces the
with clause. This clause specifies the type of events to traverse in order to build
the list of selected objects. Of course, only those events that are linked to the
object of interest can be used for the traversal.

In addition to events, the with clause can also precede the package keyword
when it expresses the relationship between a device and a package object, as
explained below.

Logical operation with events

You can refine your query even further. Let us suppose that you are interested in
those devices using firefox.exe that accessed mail.google.com yesterday:

(select (id name)
 (from device
 (with web_request
 (where binary (eq executable_name (pattern firefox.exe)))
 (where domain (eq name (string mail.google.com)))
 (between midnight-1d midnight))))

Note that the query holds two where clauses which apply to two different kinds of
objects: binary and domain. Thus, they behave as a logical-and, meaning that
the two conditions must be satisfied.

31

To behave as a logical-or, the where clauses must apply to the same kind of
object. For example, to expand our query to those devices that used chrome.exe
in addition to firefox.exe for accessing mail.google.com yesterday, write:

(select (id name)
 (from device
 (with web_request
 (where binary (eq executable_name (pattern firefox.exe)))
 (where binary (eq executable_name (pattern chrome.exe)))
 (where domain (eq name (string mail.google.com)))
 (between midnight-1d midnight))))

On the other hand, to refine our original query even more and return only those
devices which used a version of firefox.exe lower than 50, type in:

(select (id name)
 (from device
 (with web_request
 (where binary (eq executable_name (pattern firefox.exe))
 (lt version (pattern 50)))
 (where domain (eq name (string mail.google.com)))
 (between midnight-1d midnight))))

That is, set several conditions on the where clause of the same kind of object
(the binary object, in this case) for the conditions to be combined with a
logical-and.

Finally, in the rarer cases where you need to combine conditions on different
kinds of objects with a logical-or, use the union keyword documented below.

Computing aggregates

The selection of objects linked to events can be augmented with aggregates. An
aggregate is a named function that computes a count, a sum or an average of a
given field for all selected events. For instance, the incoming_traffic aggregate
adds up all the values of the field incoming_traffic of all the connection or
web_request events selected by a with clause. Specify aggregates in a
compute clause inside a with clause.

Since some aggregates require the traversal of events for their computation, you
have similar performance concerns when using aggregates as when using
events in your queries. It is important to limit the time interval of queries that may
otherwise need to traverse many millions of events. Thus, aggregates which are
not marked as FP in the data model require a between clause to limit the
traversal. The between clause, however, does not put a strict limit on the time

32

interval that you can specify. It is your responsibility to set a reasonable time
interval, especially if the query is going to be periodically repeated.

For instance, to compute the incoming traffic per device of all web requests made
to mail.google.com during the last 7 days, write the following query:

(select (id name)
 (from device
 (with web_request
 (where domain
 (eq name (string mail.google.com)))
 (compute incoming_traffic)
 (between midnight-7d midnight))))

The list of aggregates for each event table is defined in the NXQL data model.

At this stage, you may wonder how to filter devices based on the value of an
aggregate. In our previous example, you may want to select devices which
transferred 1GB of data yesterday. This is the purpose of the having clause,
which may appear in a from clause within a with clause. Of course, the
aggregates filtered by the having clause must be declared first inside the
compute clause.

(select (id name)
 (from device
 (with web_request
 (where domain
 (eq name
 (string mail.google.com)))
 (compute incoming_traffic)
 (between midnight-7d midnight))
 (having
 (gt incoming_traffic
 (byte 1073741824))))

Using categories and custom fields

In NXQL, both categories and custom fields are treated equally. They behave like
classic fields, but their name is prefixed by the # character. For instance, to
retrieve the list of devices with their Location, given that Location is a category
on device, write the following query:

(select (id name #Location) (from device))

You can also use categories or custom fields as filters:

33

(select (id name)
 (from device
 (where device
 (eq #Location (enum Paris)))))

The names of categories or custom fields containing spaces or quotes must be
quoted:

(select (id name)
 (from device
 (where device
 (eq #"My Location" (enum Paris)))))

Campaigns custom fields

The results of campaigns are visible in NXQL as custom fields of the object user.
The name of custom fields related to campaigns have the following format:

#"campaign:Name of the campaign/Name of the question"

Note the use of the keyword campaign: at the beginning of the name of the
custom field. For example, to know the answers of every user to the question
Device preference within the campaign Laptop satisfaction, write the query:

(select (name #"campaign:Laptop satisfaction/Device preference")
 (from user))

The underlying type of an answer to a single answer or opinion scale question is
the string type. In turn, the underlying type of an answer to a multiple answer
question is a list of strings. Compare the values of an answer with the eq and ne
operators (no other operator is allowed for comparing answer values). For
example, to get the name and the actual answer of all the users who did not
answer No to the single answer question Device preference, write the query:

(select (name #"campaign:Laptop satisfaction/Device preference")
 (from user
 (where user (ne #"campaign:Laptop satisfaction/Device
preference"
 (string "No")))))

Similarly, to select the users who did not answer a specific single answer or
opinion scale question yet, compare with the empty string:

(select (name #"campaign:Laptop satisfaction/Device preference")
 (from user

34

 (where user (eq #"campaign:Laptop satisfaction/Device
preference"
 (string "")))))

In the case of multiple answer questions, it is possible to query for combinations
of answers in the response given by the users. Use the logical-and and logical-or
operations in the where clause described above or specify a list of values to
exactly match a particular combination. For example, to get the users who
answered both Speed and Size (and possibly something else) to the Positive
points question of the campaign Laptop satisfaction, write the query:

(select (name #"campaign:Laptop satisfaction/Positive points")
 (from user
 (where user (eq #"campaign:Laptop satisfaction/Positive points"
 (string "Speed"))
 (eq #"campaign:Laptop satisfaction/Positive points"
 (string "Size")))))

Instead, if you want to query for the users that exactly answered Speed and Size
and nothing else, specify them as a list:

(select (name #"campaign:Laptop satisfaction/Positive points")
 (from user
 (where user (eq #"campaign:Laptop satisfaction/Positive points"
 (list ("Speed" "Size"))))))

Alternatively, to get the users that chose one of the values Speed or Size (or
both), write the logical-or version of the query:

(select (name #"campaign:Laptop satisfaction/Positive points")
 (from user
 (where user (eq #"campaign:Laptop satisfaction/Positive points"
 (string "Speed")))
 (where user (eq #"campaign:Laptop satisfaction/Positive points"
 (string "Size")))))

Finally, to get the users that did not give any answer yet to a multiple answer
question, compare with the nil keyword instead of an empty string:

(select (name #"campaign:Laptop satisfaction/Positive points")
 (from user
 (where user (eq #"campaign:Laptop satisfaction/Positive points"
nil))))

35

Scores custom fields

Scores are accessible through NXQL as special custom fields of the objects
device or user. The name of custom fields related to scores have the following
format:

#"score:Name of the score definition/Name of the score"

Note the use of the keyword score at the beginning of the name of the custom
field. For example, to get the Boot speed leaf score of all devices, which is
inside the Device performance score definition, write the query:

(select (name #"score:Device performance/Boot speed")
 (from device))

Because scores hold numerical values, the underlying type of any score is the
real type. As an example of putting a condition on the value of a score, the
following query retrieves all the devices whose Boot speed score is higher than
5.0:

(select (name #"score:Device performance/Boot speed")
 (from device
 (where device (gt #"score:Device performance/Boot speed"
 (real 5.0)))))

Apart from numerical values, a score may have no value at all. To query for
objects with an empty score, compare the value of the score with the nil keyword
using the eq or ne operators. For example:

(select (name #"score:Device performance/Boot speed")
 (from device
 (where device (eq #"score:Device performance/Boot speed"
 nil))))

Remote actions custom fields

Get results and other information about the execution of remote actions through
NXQL by accessing special custom fields of the object device. The name of
custom fields related to remote actions have the following format:

#"action:Name of the remote action/Name of the output or exec
info"

Note the use of the keyword action at the beginning of the name of the custom
field. For example, to get the Execution status of the remote action Get Event

36

Log on all devices, write the query:

(select (name #"action:Get Event Log/Execution status")
 (from device))

To filter devices with no status for a particular remote action, compare the value
of the status to the nil keyword. For example, to get all devices that have an
execution status regarding the remote action Get Event Log, type in:

(select (name #"action:Get Event Log/Execution status")
 (from device
 (where device (ne #"action:Get Event Log/Execution status"
 nil))))

The results of remote actions (that is, their output values) are accessible through
NXQL as well. Inside your NXQL queries, type in the name of the output exactly
as defined in the remote action. Note that the name of the output may differ from
its assigned label, which is displayed in the Finder. For instance, to get the path
to the file generated by the remote action Get Event Log (name of the output
OutputFile , label Output file), write the query:

(select (name #"action:Get Event Log/OutputFile")
 (from device))

Each output value is of the type indicated in the definition of the remote action.
To compare with empty values, use nil in the case of numeric outputs and the
empty string "" for outputs of the string type.

Using platforms

NXQL supports the three platforms included from Nexthink V5.3: Windows, Mac,
and Mobile.

When using the NXQL editor, select the platforms to which the query
applies by ticking the check boxes at the top right corner of the editor.

•

When directly querying the API via an HTTP request (e.g. from a script or
an integration), use the platform parameter described in the introduction.

•

When selecting multiple platforms, beware that only those tables and fields that
are common to all the selected platforms are valid in your query. For instance,
the field name of a device is available for all three platforms, but all_antiviruses
is available only for devices of the Windows platform. Therefore, a multi-platform
query that includes the field all_antiviruses is not valid.

37

Selecting multiple tables

There are two types of queries in NXQL which let you combine information from
multiple tables:

Selecting unique pairs of objects in relation to events of a particular kind.•
Selecting events of a particular kind, as well as information from objects
linked to those events.

•

Although they may look similar, both types of queries differ in some aspects that
we detail below.

The most common type of query that requires multiple tables consists in
selecting unique pairs of objects which took part in a series of events. In this type
of query, you can select only two object tables, while you specify the event table
that makes the link between each pair of objects inside a with clause. In the
select clause, specify the name of each object table before its corresponding list
of fields, and then repeat the names of the object tables in the from clause. For
instance, if you are interested in the names of both the users that executed
firefox.exe and the devices on which it was executed, write the following query:

(select ((device name) (user name))
 (from (device user)
 (with execution
 (where binary
 (eq executable_name (pattern firefox.exe)))))
 (limit 100))

In the second type of query, the main interest lies in the individual events of the
selected event table, which you may decorate with information from the objects
linked to each event. Thus, to write queries of the second type, specify the name
of the event table and the names of each additional object table in the from
clause, as well as before each corresponding list of fields of interest in the select
clause. For example, the following query returns the last 100 connections of
firefox.exe, as well as the names of the devices that originated each connection:

(select ((device (name))
 (connection (start_time end_time incoming_traffic
outgoing_traffic)))
 (from (device connection)
 (where binary (eq executable_name (pattern firefox.exe))))
 (limit 100)
 (order_by start_time desc))

38

In this second type of query, objects may be repeated in the results if they are
linked to multiple events. For instance, in the example above, there may be a
device which is linked to more than one of the selected connections. The name
of that device will therefore appear repeated for each related connection. That is
the opposite of the first type of query, where you get unique pairs of objects
which may be linked to many events and you are not interested in the individual
events.

Despite the given example, you may have noticed that queries of the second
type are not limited to two tables. You must select one event table and one or
more object tables instead. For example, to get all the executions of binaries that
do not have their threat level set which took place today and display their binary
path, along with some info about the binaries, devices, and users involved, write:

(select
 (
 (execution binary_path)
 (binary (executable_name version))
 (device (name last_ip_address))
 (user (name))
)
 (from (execution binary device user)
 (where binary (eq threat_level (enum "-")))
 (between midnight now)
)
 (limit 100))

As for constraints, both types of multiple table queries require a limit clause to
restrict the maximum number of returned entries and they do not allow the
computation of aggregates.

Using packages in queries

Package is a special keyword in NXQL in the sense that it can function as an
object table or as a relationship table. Indeed, a package can refer to an installed
package itself, with its attributes such as name, version, company, etc. or to its
relation with devices through its installation. That is the reason why you can use
packages inside a with clause, which is otherwise reserved to events.

For instance, to list all devices with the package Microsoft Office 365 installed,
write the following query (package works as relation):

(select (name)
 (from device
 (with package

39

 (where package (eq name (pattern "Microsoft Office 365
ProPlus*")))))

To get the package version along with the device, write the following query
(where package works both as object and as relation):

(select ((device (name)) (package (version name publisher)))
 (from (device package)
 (with package
 (where package
 (eq name (pattern "Microsoft Office 365 ProPlus*"))
 (eq type (enum program)))))
 (limit 10000))

If you simply want to compute the number of packages installed on every device,
write the following query (where package works as relation):

(select (name)
 (from device
 (with package
 (compute number_of_packages)))

Operations on sets of objects

With NXQL, it is possible to compute two lists of objects of the same type and
combine them into a single result with just one query.

For example, to compute the list of devices without the package Microsoft
Office:

(select (name)
 (except
 (from device) - list of all devices
 (from device - list of device with Office
 (with package
 (where package (eq name (pattern
*Microsoft*Office*)))))))

To execute the query above, the system computes the list of all devices and
subtracts from it the list of devices with Microsoft Office, creating logically the
list of devices without Microsoft Office.

Three set operators exists:

except (A) (B): Return objects appearing in A but not in B.•
union (A) (B): Return all objects appearing in A or in B.•

40

intersect (A) (B): Return only those objects appearing both in A and in B.•

Remember that only one object table can be used in the two from clauses linked
by a set operator. It is impossible to do an union of devices and users, for
instance.

Note as well that these operators work with object tables only and not with event
tables.

Updating values of categories and custom fields

To update a dynamic field, i.e. a category, use an update statement. An update
statement sets the values of the specified dynamic fields in all the objects
selected by a from clause. For instance, to set the location of some devices to
Paris, based on their last IP address, write the following query:

(update (set #Location (enum Paris))
 (from device
 (where device
 (eq last_ip_address (ip_network 172.16.12.0/16)))))

Setting category overrides the auto-tagging rules associated with an keyword. If
you want to reactivate the auto-tagging rules, write the following query.

(update (set #Location nil)
 (from device
 (where device
 (eq last_ip_address (ip_network 172.16.12.0/16)))))

Note that the table returned by an update statement contains the identifiers of all
modified objects

Using placeholders

To generalize a query that you execute often, use placeholders. A placeholder is
a number prefixed by the % character that you put in the place of a value, or a
custom field name, or a category name inside a query. When the query is
executed, each placeholder is replaced by the actual value supplied as
parameter. For example, the following query includes two placeholders:

(select (id name)
 (from device
 (with web_request
 (where device (eq #%1 (enum %2)))
 (between midnight-1d midnight))))

41

To execute this query, you should provide the name of a custom field or category
for devices and its actual value as parameters. In the NXQL editor, provide the
parameter values in the two text boxes for parameter input below the query.

In programmed queries, provide the actual parameters in the HTTP request.

NXQL language definition

While the NXQL tutorial guides you through your first steps with NXQL, this
document gives a more formal definition of the query capabilities of NXQL.

Selecting plain objects

To select objects from an object table, use this form of the select statement:

(select ([field]...)
 (from [object]
 (where [object] [filter])...))

Example:

(select (id name)
 (from device))

Selecting plain events

To select events from an event table, use this form of the select statement:

(select ([field]...)
 (from [event]
 (where [event] [filter]...)...
 (between datetime datetime))
 (order_by start_time [asc|desc]) // optional
 (limit number))

Example:

(select (start_time incoming_traffic outgoing_traffic)
 (from connection

42

 (where connection (ne status (enum established))
 (ne status (enum closed)))
 (where user (eq name (string "siesme@AONNETWORK")))
 (between now-7d now))
 (order_by start_time asc)
 (limit 100))

This query returns the start time and the incoming and outgoing traffic of the last
100 connections whose status is not equal to established or closed. That is,
those connection with a status equal to rejected, no host or no service.

Selecting events with decoration

To select events and their linked objects from a given event table, use the
following form of the select statement. Note that there is no limit on the number of
object tables that you can specify, as long as the object table is really linked to
the events. For instance, it would not make much sense to query about printers
related to execution events, since printers are not linked to executions.

(select (([object|event] [field]...)...)
 (from ([event] [object]...)
 (where [object|event] [filter]...)...
 (between datetime datetime))
 (order_by start_time [asc|desc]) // optional
 (limit number))

Example:

(select ((connection (start_time)) (user (name)))
 (from (connection user)
 (where connection (ne status (enum established))
 (ne status (enum closed)))
 (between now-7d now))
 (order_by start_time desc)
 (limit 100))

The query returns the start time as well as the name of the user who initiated the
last 100 connections whose status is not equal to established or closed, that is,
with a status equal to rejected, no host or no service.

Another example:

43

(select ((user (name)) (device (name)))
 (from (connection user device)
 (where connection (ne status (enum established))
 (ne status (enum closed)))
 (between now-7d now))
 (order_by start_time desc)
 (limit 100))

This last query is identical to the previous one, except for that it does not return
the start time of the connection. Since these kind of queries return one tuple per
event, you may see a tuple with the same user name and device name
appearing more than once in the results. These tuples are not really duplicated
results, they actually belong to different connections although you may not see
the difference due to the selected fields.

Selecting objects with activity

To select objects linked to an activity (event), use the following select statement.
The difference with the previous family of queries is that in the former you get
one result tuple per event, while in this latter you get one result tuple per object.

(select ([field]...)
 (from [object]
 (with [event]
 (where [object|event] [filter]...)...
 (compute [aggregate]...) // optional
 (between datetime datetime))
 (having [filter on aggregate]...) // optional
 (order_by [field] [asc|desc]) // optional
 (limit number)) // optional

Example:

(select (name)
 (from device
 (with execution
 (where binary (eq threat_level (enum high)))
 (where binary (eq threat_level (enum intermediate)))
 (compute number_of_binaries)
 (between midnight-1d midnight)))
 (limit 100)
 (order_by name desc))

This query returns those devices which executed a binary whose threat level is

44

intermediate or high yesterday. In addition, for each device, the query computes
the number of distinct binaries matching the condition.

Selecting two objects

To select unique pairs of objects linked to a given type of events, use the
following select statement. Note that you can select no more than two object
tables and that you cannot use any logic operator.

(select (([object] [field]...)...)
 (from ([object] [object])
 (with [event]
 (where [object|event] [filter]...)...
 (between datetime datetime))
 (limit number))

Example:

(select ((package name) (device name))
 (from (package device)
 (with package
 (where package (eq name (pattern "*Office*")))))
 (limit 100))

This query returns the unique pairs of devices and packages, where the name of
the package contains the term Office.

Updating objects

The update statement modifies categories or custom fields of an object table:

(update (set [field] ([type] [value]))...
 (from [object]
 (where [object] [filter]...)...))

To reset the value of a category or custom field, use the following update
statement:

(update (set [field] nil)...
 (from [object]
 (where [object] [filter]...)...))

45

Examples:

(update (set #Location (enum Paris))
 (from device
 (where device (eq name (pattern "PA*")))))

This query updates the Location category of every device whose name begins
with PA to Paris.

(update (set #Location nil)
 (from device
 (where device (eq name (pattern "PA*")))))

This query resets the Location category to nil. If an auto-tagging rule for the
Location of devices is in force, the system will reset the value to the keyword of
the matching auto-tagging rule.

Filter

A filter is condition on a field value. It has the following format:

([comparer] [field] ([type] [value]))
([comparer] [field] nil)

Where [comparer] may have one of the following values:

eq: equal. If the type of the field is an array of [type], eq is true if at least
one element of the array is equal to the value.

•

ne: not equal. If the type of the field is an array of [type], ne is true if no
element of the array is equal to the value.

•

lt: less than.•
le: less or equal.•
gt: greater than.•
ge: greater or equal.•

Where [type] may have one of the following values:

boolean: A true or false value. Use keywords true and false, yes and no,
or 1 and 0 as boolean literals.

•

46

string: A string, If the string contains a space or a double-quote, it must
be double-quoted and the quote duplicated, e.g "Softy ""Visual""".

•

integer: An integer number, e.g. 10.•
real: A floating-point number, e.g. 12.56.•
enum: A list of distinct values. As in the case of strings, if the value
contains a space or a double-quote, it must be double-quoted.

•

second: A natural number representing seconds, e.g. 60 second (= 1
minute).

•

millisecond: A natural number representing milliseconds, e.g. 60000
millisecond (= 1 minute).

•

microsecond: A natural number representing microseconds, e.g.
60000000 microsecond (= 1 minute).

•

byte: A natural number representing bytes, e.g. 1048576 byte (= 1MB).•
ip_address: An IP address, e.g. 172.16.10.5.•
ip_network: An IP network, e.g. 172.16.0.0/16.•
mac_address: A MAC address, e.g. 48:5b:39:18:70:bb.•
mhz: A natural number representing mega hertz, e.g. 1600 mhz (= 1.6
GHz).

•

sid: A Windows security token, e.g.
S-1-5-21-3623811015-3361044348-30300820-1013.

•

md5: A MD5 hash code in hexadecimal format, e.g.
d41d8cd98f00b204e9800998ecf8427e.

•

port: A port type (udp/tcp) followed by a port number, e.g. tcp/8080.•
version: Four integers separated by a '.', e.g. 5.1.0.34.•
datetime: A date and time in ISO 8601 format, e.g. 2014-06-12T13:54:51.•
time: A time in ISO 8601 format, e.g. 13:54:51.•
date: A date in ISO 8601 format, e.g. 2014-06-12.•
day: A natural number representing days, e.g. 7 days (= 1 week).•
percent: A fraction of 1 represented with 2 decimal places, e.g. 0.75, or
75% when displaying formatted output.

•

permill: A fraction of 1 represented with 3 decimal places, e.g. 0.752, or
75.2% when displaying formatted output (note that formatted permill
values are displayed as a percentage).

•

Use the special type pattern to match a string against a star pattern expresssion.
Note that only the eq and ne operators are available for the type pattern, for
example:

(eq name (pattern "NY*"))

Filters belonging to the same where clause are composed with a logic AND. For
instance, the following where clause selects only devices whose name begins
with NY and whose manufacturer is Dell:

47

(where device (eq name (pattern "NY*"))
(eq device_manufacturer (string "Dell"))

Between

Date and time in a between clause is composed of a date time in ISO 8601
format or one of the following keywords:

now: query time.•
midnight: last midnight.•
sunday: last Sunday at 00:00:00.•
monday: last Monday at 00:00:00.•
tuesday: last Tuesday at 00:00:00.•
wednesday: last Wednesday at 00:00:00.•
thursday: last Thursday at 00:00:00.•
friday: last Friday at 00:00:00.•
saturday: last Saturday at 00:00:00.•

Optionally followed by a positive or negative integer and one of the following
units:

w: week i.e. 7 days.•
d: day i.e. 24 hours.•
h: 1 hours.•
m: 1 minutes.•
s: 1 second.•

Examples:

(between midnight now): today.•
(between midnight-1d midnight): yesterday.•
(between monday monday+24h): last monday.•
(between 2014-7-16@14:00:00 2014-7-16@15:00:00): on 2014-7-16
between 2 and 3 PM.

•

NXQL Data Model

Objects

48

application

An application is a sets of executables e.g. 'Microsoft Office'. Platforms:

Name Type Properties
company string

Company producing the application

database_usage permill

Percentage of the database used
by information related with the
application

description string

Application description

first_seen datetime NU

First time activity of the application
was recorded on any device.

id identifier

Unique application identifier

known_packages string

List of packages known to contain
the application. This list is not
exhaustive: The presence of a
package does not necessarily imply
that on a given device the
application was installed through
that package.

last_seen datetime NU

Last time activity of the application
was recorded on any device.

name string

Application name

platform enum

The platform (operating system
family) on which the application is
running.

storage_policy enum

Indicates the event storage policy
for the application. Possible values
are:

49

all: web requests,
connections and
executions are stored;

•

connections and
executions;

•

executions;•
none: no activity is
recorded.

•

total_active_days day

Total number of days the
application was active.

binary

A binary is an executable binary files identified by its hash code. Platforms:

Name Type Properties
application_category string SE

Indicates the category of the
application:

'-': Not yet tagged;•
Unknown: Not
categorized by
Nexthink Library.

•

application_company string

Application company

application_name string

Application name

architecture enum

Executable architecture (32/64 bit)

average_cpu_usage permill

Average CPU usage for the binary

average_memory_usage byte NU

Average memory usage for the
binary

average_number_of_graphical_handles integer NU

Average number of graphical
handles (GDI)

company string

50

Executable company

database_usage permill

Percentage of the database used
by information related with the
binary.

description string

Description as it appears in the
binary file.

executable_name string

Executable name

file_size byte

Binary file size

first_seen datetime NU

First time activity of the binary was
recorded on any device.

hash md5

Hash code of the binary (MD5)

id identifier

Unique binary identifier

last_seen datetime NU

Last time activity of the binary was
recorded on any device.

paths path

List of paths of the binary

platform enum

The platform (operating system
family) on which the binary is
running.

sha1 sha1

SHA-1 hash code of the binary

sha256 sha256

SHA-256 hash code of the binary

storage_policy enum

Event storage policy for the binary
(connection and execution,
execution-only or none)

threat_level enum SE

51

Indicates the threat level of the
binary:

'-': Not yet tagged;•
none detected: No
known threat;

•

low: low threat;•
intermediate:
Intermediate threat;

•

high: high threat.•
total_active_days day

Total number of days the binary
was active.

user_interface boolean

Application has interactive user
interface

version version

Version of the binary

destination

A destination is a device or server receiving TCP/UDP connections. Platforms:

Name Type Properties
database_usage permill

Percentage of the database used by
information related with the
destination

first_seen datetime NU

First time activity to the destination
was recorded on any device.

id identifier

Unique destination identifier

ip_address ip_address

IP address for the destination

last_seen datetime NU

Last time activity to the destination
was recorded on any device.

name string

Reverse lookup name

52

device

A device is Windows physical or virtual machine monitored by a Nexthink
Collector. Platforms:

Name Type Properties
administrator_account_status enum

Determines whether the local
Administrator account is enabled or
disabled.

all_antispywares string

Summary information about all the
detected antispyware:

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating
system;

•

'-': No data, incompatible
collector version or the
data is not yet available.

•

all_antiviruses string

Summary information about all the
detected antiviruses:

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating
system;

•

'-': No data, incompatible
collector version or the
data is not yet available.

•

all_firewalls string

Summary information about all the
detected firewalls:

unknown: Indicates that•

53

the information could not
be retrieved;
N/A: This field is not
available on this operating
system;

•

'-': No data, incompatible
collector version or the
data is not yet available.

•

allow_non_provisionable_devices boolean NU

Indicates whether a device which does
not fully support the policy is still allowed
to connect to the Exchange Exchange
ActiveSync server. If 'yes', the security
policy is not guaranteed to be applied,
even if the field 'ActiveSync policy
application status' value is 'applied in full'

antispyware_name string NU

Name of the main antispyware

antispyware_rtp enum

Indicates whether the antispyware real
time protection (RTP) is active:

on: Indicates that RTP is
active;

•

off: Indicates that either
RTP is not active or no
antivirus has been
detected;

•

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating
system;

•

'-': No data, incompatible
collector version or the
data is not yet available.

•

antispyware_up_to_date enum

Indicates whether the antispyware is
up-to-date:

54

yes: Indicates that
antispyware is up-to-date;

•

no: Indicates that either the
antispyware is not
up-to-date or no
antispyware has been
detected;

•

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating
system;

•

'-': No data, incompatible
collector version or the
data is not yet available.

•

antivirus_name string NU

Name of the main antivirus

antivirus_rtp enum

Indicates whether the antivirus real time
protection (RTP) is active:

on: Indicates that RTP is
active;

•

off: Indicates that either
RTP is not active or no
antivirus has been
detected;

•

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating
system;

•

'-': No data, incompatible
collector version or the
data is not yet available.

•

antivirus_up_to_date enum

Indicates whether the antivirus is
up-to-date:

55

yes: Indicates that antivirus
is up-to-date;

•

no: Indicates that either the
antivirus is not up-to-date
or no antivirus has been
detected;

•

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating
system;

•

'-': No data, incompatible
collector version or the
data is not yet available.

•

audit_account_logon_events enum

Determines whether to audit each
instance of a user logging on to or
logging off from another computer in
which this computer is used to validate
the account.

audit_account_management enum

Determines whether to audit each event
of account management on a computer.

audit_directory_service_access enum

Determines whether to audit the event of
a user accessing an Active Directory
object that has its own system access
control list (SACL) specified.

audit_logon_events enum

Determines whether to audit each
instance of a user logging on to or
logging off from a computer.

audit_object_access enum

Determines whether to audit the event of
a user accessing an object, e.g. a file,
folder, registry key, printer, and so forth -
that has its own system access control
list (SACL) specified.

audit_policy_change enum

Determines whether to audit every
incident of a change to user rights

56

assignment policies, audit policies, or
trust policies.

audit_privilege_use enum

Determines whether to audit each
instance of a user exercising a user
right.

audit_process_tracking enum

Determines whether to audit detailed
tracking information for events such as
program activation, process exit, handle
duplication, and indirect object access.

audit_system_events enum

Determines whether to audit when a
user restarts or shuts down the
computer or when an event occurs that
affects either the system security or the
security log.

average_boot_duration millisecond NU

System boot duration baseline

average_logon_duration millisecond NU

User logon duration baseline

bios_serial_number string NU

BIOS serial number

chassis_serial_number string NU

Chassis serial number

collector_installation_log string NU

Link to the last Nexthink Collector
installation error log

collector_package_target_version version NU

Indicates the Collector package version
that is targeted.

collector_status enum NU

Indicates the status of the Nexthink
Collector package installed on the
device:

unmanaged: the Collector
is not automatically
updated

•

57

up-to-date: the Collector is
up-to-date

•

outdated: a newer
Collector version is
available.

•

collector_tag integer

Collector installation tag

collector_update_status enum

Current status of Nexthink Collector
Updater

collector_version version

Version number of Nexthink Collector
installation

cpu_frequency mhz NU

CPU frequency

cpu_model string NU

CPU model

database_usage permill

Percentage of the database used by
information related with the device

device_encryption_required boolean NU

Indicates whether device encryption is
required.

device_manufacturer string NU

Indicates the device manufacturer.

device_model string NU

Indicates the model of the device.

device_password_required boolean NU

Indicates whether a password is
required on the device.

device_product_id string NU

Device product ID

device_product_version string NU

Device product version

device_serial_number string NU

Indicates the device serial number.

device_type enum

58

Type of device (desktop, laptop, server,
mobile)

device_uid md5

Indicates the universally unique identifier
(based on Engine name and device ID)

device_uuid string

Indicates the device universally unique
identifier (UUID)

disks_manufacturers string

Hard disks manufacturers

disks_smart_index percent NU

Lowest S.M.A.R.T. index of installed
hard disks (index is based on S.M.A.R.T.
attributes)

distinguished_name string NU

Indicates the distinguished name (DN)
as seen:

For Windows: In Active
Directory (AD). if no
connection with AD is set
up, a '-' is displayed;

•

For Mobile: In the
Exchange ActiveSync
server

•

eas_access_state enum

Indicates whether the device can access
the Exchange ActiveSync server. The
possible states are:

allowed: the device has
access;

•

blocked: the device is
blocked;

•

discovery: the device is
temporary quarantined
while it is being identified
by the Exchange
ActiveSync server;

•

quarantined: the device is
waiting for Exchange

•

59

ActiveSync administrator
approval.

eas_access_state_reason enum

Indicates the reason for the device
access state. The possible values are:

global: caused by the
global access settings;

•

device rule: caused by a
device access rule;

•

individual: caused by an
individual exemption;

•

policy: caused by
Exchange ActiveSync
policy.

•

eas_device_access_rule string

Indicates the name of the access rule.
An access rule allows, blocks or
quarantines devices based on the device
type, model, OS or user agent
characteristics.

eas_device_identity string

Indicates the identity of the device in
Exchange ActiveSync Server.

eas_exemption enum

Indicates whether a personal exemption
is set for the device and its user.
Possible values are:

none;•
allow;•
block.•

eas_policy_application_status enum

Indicates whether the Exchange
ActiveSync policy is applied or not.
Possible values are:

not applied;•
applied in full: the policy is
applied (unless the field
'Allow non provisionable
devices' value is 'yes');

•

60

partially applied.•
eas_policy_name string

Indicates the name of the Exchange
ActiveSync policy applied to the user's
mailbox.

eas_policy_update datetime

Indicates the last time the Exchange
ActiveSync policy was updated on the
device.

email_attachment_enabled boolean NU

Indicates whether attachments can be
downloaded to the mobile device
through the Exchange ActiveSync
protocol.

enforce_password_history integer NU

Indicates the number of unique
passwords that have to be associated
with a user account before an old
password can be reused.

entity string

Entity

extended_logon_duration_baseline millisecond NU

Extended logon duration baseline

firewall_name string NU

Name of the main firewall

firewall_rtp enum

Indicates whether the firewall real time
protection (RTP) is active:

on: Indicates that RTP is
active;

•

off: Indicates that either
RTP is not active or no
antivirus has been
detected;

•

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating

•

61

system;
'-': No data, incompatible
collector version or the
data is not yet available.

•

first_seen datetime NU

Indicates the first time when the activity
of the device was recorded:

For Windows and Mac OS:
The first time Collector
reported activity;

•

For Mobile: The first time
the device was reported
with a successful
synchronization.

•

graphical_card_ram byte NU

Amount of RAM of the graphical card
with most RAM

graphical_cards string

Installed graphical cards

group_name string NU

Name of computer domain or workgroup

guest_account_status enum

Determines if the Guest account is
enabled or disabled.

hard_disks string NC

List of all hard disks

id identifier

Unique device identifier

internet_security_settings enum

Internet security settings (ok, at risk or
unknown)

ip_addresses ip_address

List of IP addresses for the device

last_boot_duration millisecond NU

Duration of last system boot

last_extended_logon_duration millisecond NU

Last extended logon duration

62

last_ip_address ip_address NU

Last IP address assigned to the device

last_known_connection_status enum NU

Indicates the last known connection
status of the device:

udp: the device
successfully connected via
UDP but not TCP.

•

tcp: the device successfully
connected via TCP but not
UDP.

•

udp_tcp: the device
successfully connected via
both UDP and TCP.

•

'-': Collector version is
below V6.6.

•

last_logged_on_user string NU

Last logged on user

last_logon_duration millisecond NU

Last user logon duration

last_logon_time datetime NU

Last logon time

last_seen datetime NU

Indicates the last time that activity on the
device was reported:

For Windows and Mac OS:
The last time Collector
reported activity through
the UDP channel,

•

For Mobile: The last time
the device successfully
synchronized with the
Mobile Bridge.

•

last_seen_on_tcp datetime NU

Indicates the last time that the device
was successfully connected through the
TCP channel.

63

'-': The Collector is an older
version that does not
support TCP.

•

last_system_boot datetime NU

Time of last system boot

last_update datetime NU

Indicates the last Collector update time.

last_update_status enum NU

Indicates the status of the last Collector
update:

'-': the Collector was never
updated

•

successful installation: the
last Collector installation
was successful

•

package download error:
the Collector was not able
to download the Collector
package from Nexthink
Appliance

•

package digital signature
error: the Collector was not
able to check the Collector
package digital signature

•

device reboot required: the
device needs to be
rebooted to complete the
Collector installation

•

package error: the
Collector package
installation has failed

•

internal error: the Collector
package installation has
failed for an unexpected
reason.

•

last_updater_request datetime NU

Last time Nexthink Updater checked for
updates

last_windows_update datetime NU

64

Time of last system Update

local_administrators string

Users and groups which are members of
the Local Administrators group on the
device.

local_power_users string

Users and groups which are members of
the Local Powers Users group on the
device.

logical_cpu_number integer NU

Indicates the number of cores multiplied
by the number of threads that can run on
each core through the use of
hyperthreading.

logical_drives string

List of all logical drives

mac_addresses mac_address

List of MAC addresses for the device

maximum_password_age integer NU

Indicates the period in time (in days)
during which the password can be used
before the system requires the user to
change it:

Windows: As set up in the
group policy;

•

Mobile: As set up in
security policies.

•

membership_type enum

Type of computer membership
(domain/workgroup)

minimum_password_age integer NU

Period of time (in days) that a password
must be used before the user can
change it.

minimum_password_length integer NU

Least number of characters that a
password for a user account may
contain.

monitor_models string

65

Models of connected monitors

monitor_resolutions string

Screen resolutions of connected
monitors

monitors string

Connected monitors

monitors_serial_numbers string

Serial numbers of connected monitors
(ordered as in 'Monitors')

name string

Indicates the name of the device:

For Windows: NetBios
Name;

•

For Mac OS: Computer
name used on the network;

•

For Mobile: Composed by
mailbox name and device
friendly name.

•

number_of_antispyware enum

Number of antispyware detected:

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating
system;

•

'-': No data, incompatible
collector version or the
data is not yet available.

•

number_of_antiviruses enum

Number of antiviruses detected:

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating
system;

•

66

'-': No data, incompatible
collector version or the
data is not yet available.

•

number_of_cores integer NU

Number of cores

number_of_cpus integer NU

Number of CPUs

number_of_days_since_first_seen integer NU

Number of days since activity of the
device was first recorded in the system.

number_of_days_since_last_boot integer NU

Number of days since last system boot

number_of_days_since_last_eas_policy_update integer NU

Indicates the number of days since the
last Exchange ActiveSync policy update.

number_of_days_since_last_logon integer NU

Number of days since last logon

number_of_days_since_last_seen integer NU

Indicates the number of days since the
last time the device was seen by
Nexthink. The field is updated whenever
device activity is detected:

For Windows and Mac OS:
seen through the UDP
channel,

•

For Mobile: seen through
the Mobile Bridge.

•

number_of_days_since_last_seen_on_tcp integer NU

Indicates the number of days since the
last time the device was successfully
connected through the TCP channel. '-':
The Collector is an older version that
does not support TCP.

number_of_days_since_last_windows_update integer NU

Number of days since last system
Update

number_of_firewalls enum

Number of firewalls detected:

67

unknown: Indicates that
the information could not
be retrieved;

•

N/A: This field is not
available on this operating
system;

•

'-': No data, incompatible
collector version or the
data is not yet available.

•

number_of_graphical_cards integer

Number of installed graphical cards

number_of_monitors integer

Number of connected monitors

os_architecture enum

Architecture of device operating system
(x86/x64)

os_build version

Indicates the build number of the
operating system.

os_version_and_architecture string NU

Indicates name, version and architecture
(when applicable) of the operating
system.

unknown: the OS version
could not be retrieved or it
could not be mapped to a
recognized value.

•

password_complexity_requirements enum

Indicates whether password complexity
is required:

Windows: The password
must meet complexity
requirements as defined in
the group policy;

•

Mobile: No simple
passwords are allowed or
a minimum password
length is set, as defined in

•

68

the security policy.
platform enum

Indicates the platform of the device. A
platform is a set of operating system
families on which the same objects,
activities, events and properties can be
retrieved. The possible values are:

Windows;•
Mac OS;•
Mobile.•

privileges_of_last_logged_on_users enum

Privileges of the last logged on user
(user, power user, administrator)

sd_card_encryption_required boolean NU

Indicates whether SD card encryption is
required.

sid sid NU

Windows security identifier for the
device.

storage_policy enum

Indicates the event storage policy for the
device. Possible values are:

all: web requests,
connections and
executions are stored

•

connections and
executions;

•

executions;•
none: no activity is
recorded;

•

remove: The device will be
removed from Engine
during the next cleanup, as
long as it is no longer
sending data; Note that
available events depend
on the device platform.

•

system_drive_capacity byte

Total capacity of system drive

69

system_drive_free_space byte

Total available free space on system
drive

system_drive_usage percent NU

Use percentage of system drive

total_active_days day

Total number of days the device was
active.

total_drive_capacity byte

Total capacity of all drives

total_drive_free_space byte

Total free space on all drives

total_drive_usage permill NU

Total use percentage of all drives

total_nonsystem_drive_capacity byte

Total capacity of all non-system drives

total_nonsystem_drive_free_space byte

Total free space on all non-system
drives

total_nonsystem_drive_usage percent NU

Total use percentage of all non-system
drives

total_ram byte NU

Total amount of RAM

updater_error string

Last Nexthink Collector Updater error

updater_version version

Nexthink Collector Updater version

upgrade_group enum NU

Indicates the update group of Nexthink
Collector:

manual: the Collector is
manually updated

•

pilot: the Collector is
updated as part of the pilot
group

•

70

main: the Collector is
updated as part of the
main group.

•

user_account_control_status enum

User account control status (ok, at risk
or unknown)

windows_license_key string NU

Windows license key

windows_updates_status enum

Windows update status (ok, at risk or
unknown)

wmi_status enum

Windows WMI service status (ok, failure)

domain

A domain is a domain name e.g. www.nexthink.com. Platforms:

Name Type Properties
database_usage permill

Percentage of the database used
by information related with the
domain

domain_category string SE

Indicates the category of the
domain:

'-': Not yet tagged or
internal domain.

•

first_seen datetime NU

The first time the domain has been
seen.

hosting_country string SE

Indicates in which country the
domain is hosted:

'-': Not yet tagged,
internal domain or not
known by Nexthink
Library.

•

71

hostname string NU

The hostname of the fully qualified
domain name

id identifier

Unique domain identifier

internal_domain boolean

Indicates whether the domain is
considered internal:

yes: The domain is not
reported to Nexthink
Library and
subdomains are not
compressed using the
'*' pattern;

•

no: The domain is
reported to the
Nexthink Library (if the
license includes the
Security module);
complex subdomains
are compressed using
the '*' pattern.

•

last_seen datetime NU

The last time the domain has been
seen.

name string

The fully qualified domain name

protocol enum

Protocols used in web requests
(HTTP, TLS, HTTP/TLS)

response_size byte

Total web incoming traffic

storage enum

Event storage policy for the domain
(web request or none)

threat_level enum SE

Indicates the threat level of the
domain:

72

'-': Not yet tagged or
internal domain;

•

none detected: No
known threat;

•

low: low threat;•
intermediate:
Intermediate threat;

•

high: High threat.•
executable

An application is a executable programs e.g. 'winword.exe'. Platforms:

Name Type Properties
application_company string

Application company

application_name string

Application name

database_usage permill

Percentage of the database used
by information related with the
executable.

description string

Executable description

first_seen datetime NU

First time activity of the executable
was recorded on any device.

id identifier

Unique executable identifier

known_packages string

List of packages known to contain
the executable. This list is not
exhaustive: The presence of a
package does not necessarily imply
that on a given device the
executable was installed through
that package.

last_seen datetime NU

Last time activity of the executable
was recorded on any device.

name string

73

Executable name

platform enum

The platform (operating system
family) on which the executable is
running.

storage_policy enum

Indicates the event storage policy
for the executable. Possible values
are:

all: web requests,
connections and
executions are stored;

•

connections and
executions;

•

executions;•
none: no activity is
recorded.

•

total_active_days day

Total number of days the
executable was active.

package

A package is a software packages (programs or updates). Platforms:

Name Type Properties
first_installation datetime NU

Time of first installation

first_seen datetime NU

The first time the package has been
seen.

id identifier

Unique package identifier

name string

Package name

number_of_updates integer

Number of updates (for programs)

platform enum

74

The platform (operating system
family) on which the package is
installed.

program string

Package program

publisher string NU

Package publisher

status enum

Package status (installed/removed)

type enum

Package type (program/update)

version string NU

Package version

windows_7_32bit_compatibility string

Indicates the Windows 7 (32-bit)
compatibility of the package:

'-': Not yet tagged;•
No information
available: Not known
by Nexthink Library;

•

Compatible:
Compatible with
Windows 7.

•

windows_7_64bit_compatibility string

Indicates the Windows 7 (64-bit)
compatibility of the package:

'-': Not yet tagged;•
No information
available: Not known
by Nexthink Library;

•

Compatible:
Compatible with
Windows 7.

•

port

A port is a TCP or UDP connection ports. Platforms:

Name Type Properties

75

first_seen datetime NU

First time activity of the port was
recorded on any device.

id identifier

Unique port identifier

last_seen datetime NU

Last time activity of the port was
recorded on any device.

port_number integer

Port number

port_type enum

Port type (tcp, udp, tcp port scan,
udp port scan)

port_value port

Port value for tagging

printer

A printer is an installed printers (local, network, shared or virtual). Platforms:

Name Type Properties
first_seen datetime NU

First time activity of the printer was
recorded on any device.

host_name string

Host name

id identifier

Unique print identifier

last_seen datetime NU

Last time activity of the printer was
recorded on any device.

location string NU

Printer location

model string

Printer model

name string

Printer name

real_name string

76

Most frequently seen display name

type enum

Printer type (local/remote)

service

A service represents an IT service in your organization, such as the mail service
or the directory service. Services are either based on TCP connections (for
Windows and Mac devices) or on web requests (for Windows devices only).
Platforms:

Name Type Properties
id integer

Unique service identifier

name string

Service name

status enum

Service status (active, error)

type enum

Type of service (network, web)

url_path

A url_path is a URL path after the domain name e.g.
[www.nexthink.com]/awards/. Platforms:

Name Type Properties
id identifier

Unique url path identifier

path string

The URL path

user

A user is an object that represents an individual account in a device (local user)
or in a group of devices (domain user). The account may identify a physical user
or a system user. Platforms:

Name Type Properties
database_usage permill

77

Percentage of the database used
by information related with the
binary

department string

User department as listed in active
directory

distinguished_name string NU

Active directory distinguished name
(DN)

first_seen datetime NU

First time activity of the user was
recorded on any device.

full_name string NU

Full user name as listed in active
directory

id identifier

Unique user identifier

job_title string NU

Job title as listed in active directory

last_seen datetime NU

Last time activity of the user was
recorded on any device.

name string

User logon name

number_of_days_since_last_seen integer NU

Indicates the number of days since
the last time the user was seen by
Nexthink. The field is updated
whenever user activity is detected.

seen_on_mac_os boolean

Indicates if the user has been seen
on a Mac device.

seen_on_mobile boolean

Indicates if the user has been seen
on a Mobile device.

seen_on_windows boolean

Indicates if the user has been seen
on a Windows device.

sid sid NU

78

Indicates the Windows security
identifier for the user. For Mac OS,
'-' means that the user is not in
Active Directory.

total_active_days day

Total number of days the user was
active.

type enum

Type of user (local/domain/system)

Events

connection

A connection is a TCP connection or a UDP packet. Several identical TCP
connections or UDP packets are merged when in close succession.

Platforms:

Name Type Properties
cardinality integer

Number of underlying connections,
consolidated over time

destination_ip_address ip_address

IP address of the connection destination

device_ip_address ip_address

IP address of the connection source

duration millisecond

The time between the start of the first
connection and the end of the last
underlying connection.

end_time datetime

Connection end time, corresponding to
the moment when the last underlying
connection was closed.

id identifier

Unique connection identifier

incoming_bitrate bps NU

Average incoming bitrate of all
underlying connections, consolidated
over time

79

incoming_traffic byte

Incoming traffic

network_interface_iana_code string

(beta) Indicates the network interface
IANA code.

network_interface_index integer

(beta) Indicates the network interface
index.

network_interface_type enum

(beta) Indicates the network interface
type. Possible values are:

wifi•
ethernet•
mobile•
other•
unknown: the Collector is
not supporting interface
type.

•

network_response_time microsecond

TCP connection establishment time

outgoing_bitrate bps NU

Average outgoing bitrate of all
underlying connections, consolidated
over time

outgoing_traffic byte

Outgoing traffic

start_time datetime

Connection start time

status enum

Status of the connection (established,
rejected, no service, no host, closed)

type enum

Type of the connection (tcp, udp)

device_activity

A device_activity is a device activity (boot or activity).

Platforms:

80

Name Type Properties
duration millisecond

Boot duration (timed between kernel
start and launch of 'logonui.exe'
process) or online duration

id identifier

Boot event identifier

time datetime

Time of boot

type enum

Activity event information

device_error

A device_error is a critical system errors (system crash, hard reset, or disk error).

Platforms:

Name Type Properties
error_code integer

Error code

error_label string

Error label

id identifier

Problem identifier

start_time datetime

Time of error

type enum

Indicates the device error type, with
the following possible values:

system crash: a
windows bluescreen of
death;

•

hard reset: the device
was abruptly stopped
and then rebooted. It
might be caused by
pressing the reset

•

81

button, a power failure
or a crash;
SMART disk failure: a
disk error was
detected on a disk with
SMART technology.

•

device_performance (Public Beta)

An device_performance reports the average IOPS, CPU and memory of a device
during one hours.

Platforms:

Name Type Properties
average_cpu_usage percent

Average CPU usage on the period

average_memory_usage byte

Average memory usage on the period

duration millisecond

Total report duration

end_time datetime

Report end time

id identifier

Unique report identifier

read_bytes byte NU

Total disk read bytes accumulated
during the period

read_operations integer NU

Total disk read operations
accumulated during the period

time datetime

Start time

write_bytes byte NU

Total disk write bytes accumulated
during the period

write_operations integer NU

Total disk write operations
accumulated during the period

82

device_warning

A device_warning is a peak in device resource usage (CPU, memory or I/O).

Platforms:

Name Type Properties
duration millisecond

Performance event duration

end_time datetime

Performance event end time

id identifier

Unique performance event identifier

info string

Performance event information

start_time datetime

Performance event start time

type enum

Type of the device warning, one of:

'high overall cpu usage'•
'high cpu usage'
(deprecated)

•

'high io usage'•
'high memory usage'•
'high number of page
faults'.

•

value percent

Performance percentage

warning_duration millisecond

Indicates the duration of the warning.
This duration can be shorter than the
event duration when the warning is
not continuous.

execution

An execution is a process executing on a device. Serveral executions of the
same process are merged when in close succession.

83

Platforms:

Name Type Properties
average_memory_usage byte

Average memory usage

binary_path path

Executed binary path

cardinality integer

Number of underlying processes,
consolidated over time

duration millisecond

Total execution duration

end_time datetime

Execution end time

id identifier

Unique execution identifier

incoming_tcp_traffic byte

Incoming TCP traffic

incoming_udp_traffic byte

Incoming UDP traffic

outgoing_tcp_traffic byte

Outgoing TCP traffic

outgoing_udp_traffic byte

Outgoing UDP traffic

privilege_level enum

Privilege level of the execution (user,
power user, administrator)

start_time datetime

Execution start time

status enum

Status of the execution (started,
stopped)

total_cpu_time millisecond

Total CPU time

84

execution_error

An execution_error is application errors (crash or not responding)

Platforms:

Name Type Properties
id identifier

Error identifier

info string

Error event information

time datetime

Time of error

type enum

Type of the execution error
(application not responding, crash)

execution_warning

An execution_warning is a peak in application resource usage (CPU or memory).

Platforms:

Name Type Properties
duration millisecond

Performance event duration

end_time datetime

Performance event end time

id identifier

Unique performance event identifier

info string

Performance event information

start_time datetime

Performance event start time

type enum

Type of the execution warning (high
cpu usage, high memory usage)

value percent

85

Performance percentage

warning_duration millisecond

Indicates the duration of the warning.
This duration can be shorter than the
event duration when the warning is
not continuous.

installation

A installation is the installation or uninstallation of a Software packages
(programs or updates).

Platforms:

Name Type Properties
id identifier

Unique deployment identifier

time datetime

Installation start time

type enum

Type of operation (installation,
uninstallation)

network_scan

A network scan is a sequence of failed TCP connections or UDP packets made
to the same port to more than 50 destinations within a few seconds.

Platforms:

Name Type Properties
cardinality integer

Number of underlying connections,
consolidated over time

device_ip_address ip_address

IP address of the connection source

duration millisecond

The time between the start of the first
connection and end of the last
underlying connection

end_time datetime

86

Scanning end time, corresponding to
the moment when the last underlying
connection was closed.

id identifier

Unique scanning identifier

network ip_network

Minimum IP network including all
scanned destinations

start_time datetime

Scanning start time

status enum

Status of the Scanning (established,
closed)

type enum

Type of the port scanning (tcp, udp)

port_scan

A port scan is a sequence of failed TCP connections or UDP packets made to
the same destination to more than 50 ports within a few seconds.

Platforms:

Name Type Properties
cardinality integer

Number of underlying connections,
consolidated over time

destination_ip_address ip_address

IP address of the scanned destination

device_ip_address ip_address

IP address of the connection source

duration millisecond

The time between the start of the first
connection and end of the last
underlying connection.

end_time datetime

Scanning end time, corresponding to
the moment when the last underlying
connection was closed.

first_scanned_port port

87

First port scanning

id identifier

Unique scanning identifier

last_scanned_port port

Last port scanning

start_time datetime

Scanning start time

status enum

Status of the Scanning (established,
closed)

type enum

Type of the port scanning (tcp, udp)

printout

A printout is a print job processed by a printer.

Platforms:

Name Type Properties
color_print boolean

Color print

document_type string

Type of printed document

duplex boolean

Indicates whether the pages are
printed on both sides of the sheet.

id identifier

Unique print job identifier

number_of_printed_pages integer NU

Number of printed pages

page_size string

Paper size for printed pages

print_quality enum

Print quality

size byte NU

Print job size in bytes

88

status enum

Print job status(success, error,
timeout)

time datetime

Print job time

user_activity

A user_activity is a user activity (logon or interactive activity).

Platforms:

Name Type Properties
duration millisecond

Indicates the time between the user
logging on and the desktop being
shown.

id identifier

User logon event identifier

real_duration millisecond

Indicates the time between the user
logging on and the device being ready
to use. Desktops and laptops are
considered fully functional once the
CPU usage drops below 15% and the
disk usage drops below 80%, and
servers once the CPU usage of all
processes belonging to the
corresponding user drops below 15%.

time datetime

Time of user logon

type enum

Activity event information

web_request

A web_request is a HTTP or TLS requests.

Platforms:

Name Type Properties
cardinality integer

89

Number of underlying web requests,
consolidated over time

connections_duration millisecond

The time between start of the first
connection and end of the last underlying
connection

end_time datetime

Web request end time, corresponding to the
moment when the last underlying TCP
connection was closed.

http_status http_status_code NU

HTTP response status code

id identifier

Unique request identifier

incoming_traffic byte

Incoming web traffic of all underlying web
requests, consolidated over time

network_response_time microsecond

Average TCP connection establishment time
of all underlying connections, consolidated
over time

outgoing_traffic byte

Outgoing web traffic of all underlying web
requests, consolidated over time

protocol enum

Web request protocol (HTTP, TLS)

protocol_version enum

Web request protocol version

service_related boolean

Indicates whether the web request is related
to a configured service:

yes: These requests are
always visible by all users;

•

no: Depending on the privacy
settings, requests not related
to a service might not be
visible by everyone.

•

start_time datetime

90

Web request start time

web_request_duration millisecond

Average time between request and last
response byte of all underlying requests,
consolidated over time

Relationships

A relationships is a link between object and event tables and is specified in a
with clause.

connection

device•

user•

binary•

executable•

application•

destination•

port•

service•

device_activity

device•

device_error

device•

91

device_performance

device•

user•

device_warning

device•

execution

device•

user•

binary•

executable•

application•

execution_error

device•

user•

binary•

executable•

application•

92

execution_warning

device•

user•

binary•

executable•

application•

installation

device•

package•

network_scan

device•

user•

binary•

executable•

application•

port•

port_scan

device•

user•

93

binary•

executable•

application•

destination•

printout

device•

user•

printer•

user_activity

device•

user•

web_request

device•

user•

binary•

executable•

application•

destination•

port•

94

domain•

url_path•

service•

package

device•
package•

Aggregates

connection

Name Type Properties
number_of_devices integer FP

Number of devices

number_of_users integer FP

Number of users

number_of_applications integer FP

Number of applications

number_of_executables integer FP

Number of executables

number_of_binaries integer FP

Number of binaries

number_of_destinations integer

Number of destinations

number_of_ports integer

Number of ports

number_of_connections integer

Number of connections

cumulated_connection_duration millisecond

Cumulated duration of TCP connections

activity_start_time datetime NU

95

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

incoming_traffic byte NU

Total network incoming traffic

outgoing_traffic byte NU

Total network outgoing traffic

average_network_response_time microsecond

Average TCP connection establishment
time

successful_connections_ratio permill NU

Percentage of successful TCP connections

network_availability_level availability_level NU

Graded ratio of successful TCP
connections (high, medium, low)

average_incoming_bitrate bps NU

Average incoming network bitrate

average_outgoing_bitrate bps NU

Average outgoing network bitrate

highest_local_privilege_reached privileges_level NU

Highest local privilege level reached for
executions (user, power user,
administrator)

number_of_events integer NU

Number of events

incoming_network_traffic_per_device byte NU

Device average incoming network traffic

outgoing_network_traffic_per_device byte NU

Device average outgoing network traffic

total_network_traffic byte NU

Network traffic

96

device_activity

Name Type Properties
number_of_devices integer

Number of devices

average_boot_duration millisecond NU

Average system boot duration

average_logon_duration millisecond NU

Average user logon duration

average_extended_logon_duration millisecond NU

Average extended logon duration

number_of_boots integer

Number of system boots

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

uptime millisecond NU

Amount of time the machine has been
running

cumulated_interaction_duration millisecond NU

Cumulated time with user interaction
(mouse or keyboard events)

number_of_events integer NU

Number of events

device_error

Name Type Properties
number_of_devices integer

Number of devices

number_of_errors integer

Number of system errors

activity_start_time datetime NU

Start time of investigated activity

97

activity_stop_time datetime NU

Stop time of investigated activity

number_of_events integer NU

Number of events

device_performance

Name Type Properties
total_read_bytes byte NU/PB

Total read bytes

total_write_bytes byte NU/PB

Total write bytes

total_read_operations integer NU/PB

Average read IPOS

total_write_operations integer NU/PB

Average write IPOS

cumulated_measured_duration millisecond NU/PB

Average read/write IPOS

average_memory_usage byte NU/PB

Average memory usage

average_cpu_usage percent NU/PB

Average CPU usage

number_of_events integer NU/PB

Number of events

device_warning

Name Type Properties
number_of_devices integer

Number of devices

number_of_warnings integer

Number of warnings

cumulated_warning_duration millisecond NU

98

Cumulated duration of the warning
events

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

number_of_events integer NU

Number of events

high_device_overall_cpu_time_ratio permill NU

Indicates the ratio between the time
the device is in high overall CPU
usage and its uptime.

high_device_memory_time_ratio permill NU

Indicates the ratio between the time
the device is in high memory usage
and its uptime.

high_device_io_throughput_time_ratio permill NU

Indicates the ratio between the time
the device is in high IO throughput
and its uptime.

high_device_page_faults_time_ratio permill NU

Indicates the ratio between the time
the device is in high page faults and
its uptime.

execution

Name Type Properties
number_of_devices integer FP

Number of devices

number_of_users integer FP

Number of users

number_of_applications integer FP

Number of applications

99

number_of_executables integer FP

Number of executables

number_of_binaries integer FP

Number of binaries

number_of_executions integer

Number of executions

cumulated_execution_duration millisecond NU

Cumulated duration of executions

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

incoming_traffic byte NU

Total network incoming traffic

outgoing_traffic byte NU

Total network outgoing traffic

highest_local_privilege_reached privileges_level NU

Highest local privilege level reached for
executions (user, power user,
administrator)

number_of_events integer NU

Number of events

average_memory_usage_per_execution byte NU

Average memory usage per execution

cpu_usage_ratio permill NU

Average CPU usage

total_cpu_time millisecond NU

Total CPU time

incoming_network_traffic_per_device byte NU

Device average incoming network traffic

outgoing_network_traffic_per_device byte NU

Device average outgoing network traffic

total_network_traffic byte NU

Network traffic

100

execution_error

Name Type Properties
application_not_responding_event_ratio permill NU

Application not responding event
ratio

application_crash_ratio permill NU

Application crash ratio

number_of_application_not_responding_events integer

Number of application not
responding events

number_of_application_crashes integer

Number of application crashes

number_of_devices integer

Number of devices

number_of_users integer

Number of users

number_of_applications integer

Number of applications

number_of_executables integer

Number of executables

number_of_binaries integer

Number of binaries

number_of_errors integer

Number of errors

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

number_of_events integer NU

Number of events

execution_warning

Name Type Properties

101

number_of_devices integer

Number of devices

number_of_users integer

Number of users

number_of_applications integer

Number of applications

number_of_executables integer

Number of executables

number_of_binaries integer

Number of binaries

number_of_warnings integer

Number of warnings

cumulated_warning_duration millisecond NU

Cumulated duration of the warning
events

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

number_of_events integer NU

Number of events

high_application_thread_cpu_time_ratio permill NU

High application thread CPU time ratio

installation

Name Type Properties
number_of_packages integer

Number of packages

number_of_devices integer

Number of devices

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

102

Stop time of investigated activity

number_of_installations integer

Number of installations

number_of_events integer NU

Number of events

network_scan

Name Type Properties
number_of_devices integer

Number of devices

number_of_users integer

Number of users

number_of_applications integer

Number of applications

number_of_executables integer

Number of executables

number_of_binaries integer

Number of binaries

number_of_ports integer

Number of ports

number_of_connections integer

Number of connections

cumulated_scan_duration millisecond NU

Cumulated duration of the network
scan

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

incoming_traffic byte NU

Total network incoming traffic

outgoing_traffic byte NU

Total network outgoing traffic

103

number_of_events integer NU

Number of events

incoming_network_traffic_per_device byte NU

Device average incoming network
traffic

outgoing_network_traffic_per_device byte NU

Device average outgoing network
traffic

total_network_traffic byte NU

Network traffic

package

Name Type Properties
number_of_devices integer FP

Number of devices

number_of_packages integer FP

Number of packages

port_scan

Name Type Properties
number_of_devices integer

Number of devices

number_of_users integer

Number of users

number_of_applications integer

Number of applications

number_of_executables integer

Number of executables

number_of_binaries integer

Number of binaries

number_of_connections integer

104

Number of connections

number_of_destinations integer

Number of destinations

cumulated_scan_duration millisecond NU

Cumulated duration of the network
scan

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

incoming_traffic byte NU

Total network incoming traffic

outgoing_traffic byte NU

Total network outgoing traffic

number_of_events integer NU

Number of events

incoming_network_traffic_per_device byte NU

Device average incoming network
traffic

outgoing_network_traffic_per_device byte NU

Device average outgoing network
traffic

total_network_traffic byte NU

Network traffic

printout

Name Type Properties
number_of_devices integer

Number of devices

number_of_users integer

Number of users

number_of_printers integer

105

Number of printers

number_of_printed_pages integer

Number of printed pages

number_of_printouts integer

Number of print jobs

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

number_of_events integer NU

Number of events

user_activity

Name Type Properties
number_of_devices integer

Number of devices

number_of_users integer

Number of users

number_of_logons integer

Number of user logons

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

Stop time of investigated activity

cumulated_interaction_duration millisecond NU

Cumulated time with user interaction
(mouse or keyboard events)

average_logon_duration millisecond NU

106

Average user logon duration

average_extended_logon_duration millisecond NU

Average extended logon duration

number_of_events integer NU

Number of events

web_request

Name Type Properties
total_web_traffic byte NU

Web traffic

outgoing_web_traffic_per_device byte NU

Outgoing web traffic per device

incoming_web_traffic_per_device byte NU

Incoming web traffic per device

number_of_devices integer FP

Number of devices

number_of_domains integer FP

Number of domains

number_of_users integer FP

Number of users

number_of_applications integer FP/NU

Number of applications

number_of_executables integer FP

Number of executables

number_of_binaries integer FP

Number of binaries

number_of_destinations integer

Number of destinations

number_of_ports integer

Number of ports

activity_start_time datetime NU

Start time of investigated activity

activity_stop_time datetime NU

107

Stop time of investigated activity

average_network_response_time microsecond

Average TCP connection establishment time

highest_local_privilege_reached privileges_level NU

Highest local privilege level reached for executions
(user, power user, administrator)

number_of_web_requests integer

Number of web requests

protocols_used_in_requests web_protocol_combination NU

Protocols used in web requests (HTTP, TLS,
HTTP/TLS)

lowest_protocol_version min_web_protocol_version NU

Lowest protocol version observed in web requests
(excluding web requests with unknown protocol
version)

incoming_traffic byte NU

Total web incoming traffic

outgoing_traffic byte NU

Total web outgoing traffic

average_incoming_bitrate bps NU

Average incoming bitrate of all underlying web
requests, consolidated over time

average_outgoing_bitrate bps NU

Average outgoing bitrate of all underlying web
requests, consolidated over time

cumulated_web_request_duration millisecond NU

Cumulated duration of web requests

cumulated_web_interaction_duration millisecond NU

Cumulated time during which web requests occurred,
counted with a 5 minutes resolution.

average_request_size byte NU

Average size of web requests

average_response_size byte NU

Average size of web responses

average_request_duration millisecond

Average time between request and last response byte

successful_http_requests_ratio permill NU

108

Percentage of successful HTTP requests (1xx, 2xx
and 3xx)

number_of_events integer NU

Number of events

Definitions

The following document lists all objects, fields and aggregates available through
NXQL. Each field and aggregate have a name, a type, properties and a
description.

Platforms can have the following values:

W: The field, aggregate or table is available on the Windows platform.•
X: The field, aggregate or table is available on the Mac OS platform.•
M: The field, aggregate or table is available on the Mobile platform.•

Properties can have the following values:

DE: The field or aggregate is deprecated.•
PB: The field or aggregate is in Public Beta.•
FP: The field or aggregate can be used without a between clause.•
NU: The field or aggregate can be nil.•
SE: The field or aggregate is only available with a license containing the
security feature.

•

WE: The field or aggregate is only available with a license containing the
web monitoring feature.

•

NC: The field is not comparable.•

109

Web API V1 (deprecated)

Publishing an investigation

Use the Web API V2 and NXQL for new integrations, as the Web API V1 has
been deprecated. Otherwise, create your investigation for the Web API V1 using
the Finder in the same way as you would create a normal investigation. To make
the investigation available through the Web API, you just need to publish the
investigation. Publishing an investigation in the Web API means that the
investigation may be accessed as a RESTful service. The Engine automatically
generates a URL that identifies the investigation and external tools may then use
this URL to query the Engine and get the results of the investigation.

To publish an existing investigation:

Locate the investigation in the Investigations section of the left-hand side
panel in the Finder.

1.

Right-click the investigation and choose the option Save as Web API
investigation (deprecated)... from the context menu. Only a user with the
permission to manage the Web API V1 has the right to select this option,
due to the possibility of publishing sensitive information.

2.

The Finder directs you to the Settings -> Web API view and it opens the
investigation for editing. If you do not want to modify anything, click Save
& Run and the investigation will be published. The lifetime of this new
Web API investigation is not bound to that of the original investigation and
both can be independently modified.

3.

Alternatively, you can directly create a Web API investigation from the Settings
-> Web API view in the Finder. Right-click on the Settings area and choose the
Create new Web API investigation option from the context menu. Investigations
created in this way are automatically published. Only a user with the permission
to manage the Web API V1 has the right to create and view Web API
investigations.

It is possible to temporarily disable a published investigation by right-clicking on it
and selecting the Disable option from its context menu. This will effectively
remove the investigation from the set of investigations accessible through the
Web API.

In order to re-enable it again, just right-click on it and select the Enable option in
the menu.

110

Related tasks

Creating an investigation•
Introducing the Web API V2•
Adding users•

The URL of Web API investigations

The URL of a Web API investigation

The URL that identifies and locates a Web API investigation (deprecated) is
composed of the following elements:

The scheme of the URL is https:// since Web API uses the HTTPS
protocol.

1.

The host name is the DNS name given to the Engine.2.
The port is the configured port for the Web API. By default, it is TCP port
1671.

3.

The path starts with the version number of the Web API, currently this is
version 1.

4.

The keyword investigations follows next.5.
The next element is a secret token generated by the Engine in the form of
a big number that prevents the URL from being accessed accidentally.

6.

Finally, the name of the investigation, encoded using standard
URL-encoding.

7.

Example of URL for a Web API investigation
https://engine.yourcompany.com:1671/1/investigations/4279470877/Investigation%20Name

The URL of template Investigations

Template investigations are investigations which are parametrized; that is, they
include undefined parameters in their conditions. In order to query the engine
with a template investigation, you need to supply appropriate values for the
required parameters. For instance, when you launch a template investigation
from the Finder, a dialog box will prompt you to insert actual values for each one
of the undefined parameters.

A template investigation may also be published in the Web API. Therefore, the
URL of template investigations needs to allow some space for specifying the
values of the parameters. In the current implementation of the Web API, actual

111

parameters of template investigations are added to the end of the URL, right after
a question mark character ? which separates the parameter values from the
name of the investigation. Successive parameters are separated by the
ampersand character &.

Example of URL for a Web API template investigation with two parameters
https://engine.yourcompany.com:1671/1/investigations/4279470878/Template%20Investigation?param1¶m2

Processing the response of Web API investigations

The XML results of a Web API Investigation

The Web API response to an HTTP GET request that identifies an investigation
(deprecated) is given in XML format. The response is an XML representation of a
result table and it is divided into two parts: the header and the body. The header
holds the names of the fields that were requested by the investigation, which
briefly describe the content of each column of the table. The body holds the
values of the table, displaying the results row by row.

Structure of an XML response from the Web API:

<?xml version="1.0" encoding="UTF-8"?>
<investigation name="Sample Web API Investigation" ?>
<header>
<c0><name>[1st field name]</name></c0>
<c1><name>[2nd field name]</name></c1>
?
<cN><name>[Nth field name]</name></cN>
</header>
<body>
<r>
<c0>[value of the 1st field of the 1st object]</c0>
<c1>[value of the 2nd field of the 1st object]</c1>
?
<cN>[value of the Nth field of the 1st object]</cN>
</r>
<r>
<c0>[value of the 1st field of the 2nd object]</c0>
<c1>[value of the 2nd field of the 2nd object]</c1>
?
<cN>[value of the Nth field of the 2nd object]</cN>
</r>
?
</body>
</investigation>

112

Since published Web API investigations are accessed anonymously, every date
or time value in the response is expressed in the time zone of the administrator
account.

Validating the XML response of a Web API Investigation

The names of the fields and their column order in an XML response are usually
the same that you would see in a Finder table. There are a few exceptions to this
rule which are listed in the table below. Web API investigations directly take the
field names from the Engine, whereas the Finder maps some of the field names
of the Engine to a different name depending on the object of the investigation.

Activities/Events Web API Finder
installations Time Time of installation

installations Type Operation type

executions Time Start time

executions Type Status

connections Time Start time

connections Type Status

print jobs Type Status

system boots Value Duration

user logons Value User ID

source warnings Time Start time

execution warnings Time Start time

source errors Value Error Code

The format of numerical values in the XML response may also differ from the
format given by the Finder because of the unit used. For instance, 1 megabyte of
RAM is formatted as 1MB in Finder and as 1048576 bytes in the XML response.
This is because Finder results where designed to be human-readable, while XML
responses are meant to be processed by an application. As a rule of thumb,
numerical values in an XML response are expressed in their most basic unit,
avoiding prefixes such as kilo or mega. The precise format of an XML response
is given by its corresponding XML schema definition (XSD). The Engine
generates an XSD for every Web API investigation. You can get the XSD of a
particular investigation using the Web API itself. You just need to append the
suffix /xsd to the URL of the investigation. Alternatively, you can right-click the
Web API investigation in the Finder and select the option View Schema? from
the context menu. Then the Finder will open your default browser with the URL of
the XSD.

113

Example of URL for the XSD of a Web API investigation
https://engine.yourcompany.com:1671/1/investigations/4279470877/Investigation%20Name/xsd

Testing the Web API

In order to test whether a published investigation is working or not, you may use
a standard web browser. You just need to copy the URL of the published
investigation to the address bar of your favorite browser. The browser should
then display the XML with the results of the investigation. If the URL is malformed
or the Web API investigation has been disabled, the browser will be unable to
show the results. Even with the correct URL, some browsers will not display the
XML content right away, giving it some kind of format to present it as HTML or
hiding it because of alleged security reasons. Get to know your browser options
to circumvent these situations. From the Finder, you may alternatively right-click
on the Web API investigation and select the option Run in browser?. This action
will open an instance of your default web browser and automatically address it to
the URL of the investigation.

Performance considerations

Please bear in mind that every external system that uses the Web API will be
directly querying against the Nexthink database. Since the processing of each
query requires the allocation of some computational resources, a fast-paced
repeated use of the Web API may impact the overall system performance, up to
the point of making it unusable. Therefore, remember to keep the number of Web
API queries to a sensible rate, similar to the rate that could be achieved by a
typical Finder user.

114

Examples and tools

Excel integration with NXQL

This example shows how to query the Engine from Excel using NXQL. It
replicates the functionality of the NXQL web editor included in every Engine that
has the Integration tookit in an Excel spreadsheet. The provided macros run the
queries that you type in and store their results in a separate sheet of your choice.

Explore the code and learn how to integrate NXQL calls into reports
automatically generated with Excel.

Click to download the example of Excel integration with NXQL.

Integrating with SCCM

Overview

Export lists of devices or users from the results of investigations in Nexthink to
new or existing collections in SCCM. From the System Center 2012
Configuration Manager Console, launch predefined investigations on users or
devices in the Finder.

Download from here the installer for the Nexthink integration with SCCM. Note
that you must have purchased the Nexthink Integrate module to download the
installer.

115

Console extensions

Once you have installed the Nexthink integration with SCCM, find the Nexthink
button at the Home tab of the SCCM console. When viewing users or devices in
the SCCM console, press the Nexthink button and launch one of the predefined
actions on the selected users or devices. The Finder executes an investigation or
displays the device or the user view, depending on the chosen action.

The Nexthink button is also accessible from the context menu that pops up when
you right-click a selection of users or devices.

The bridge

After executing an investigation in the Finder that returns a list of users or
devices, select one or more of the returned items and right-click on them to bring
up a context menu. In the context menu, select Custom actions > Export to
SCCM... to export the selected items as a new or existing collection to SCCM.

Related references

Software components•

Integrating with ServiceNow

CMDB Connector

Synchronize the Configuration Items that you see in Nexthink with the CMDB of
your ServiceNow instance.

Find the application in the official ServiceNow Store, purchase it for free, and
install it in your ServiceNow instance. Download from here the documentation
and the associated content pack.

Incident Management Connector

Integrate end-user analytics from Nexthink into the incident management system
of ServiceNow for improved Help Desk support.

Find the application in the official ServiceNow Store, purchase it for free, and
install it in your ServiceNow instance. Download from here the documentation
about the integration.

116

Related references

Nexthink CMDB connector for ServiceNow (Community)•
Nexthink Incident Management connector for ServiceNow (Community)•

Integrating with HP ArcSight

The Nexthink integration with ArcSight lets you send global alerts triggered by
conditions on device or binary objects to your ArcSight server via syslog
messages. The ArcSight server receives these alerts as events in the Common
Event Format (CEF), letting you compare and correlate Nexthink alerts with other
types of CEF events sent by third-party products.

The Nexthink integration with ArcSight is a certified HP integration.

Download from here the documentation and software deliverables.

117

	Table of Contents
	Integrating with Nexthink
	 Overview
	 Getting data through the Web API
	 Bidirectional integration with the Finder
	 Triggering remote actions via their API
	 Integrating investigation-based alerts
	 Downloads

	Web API V2 and NXQL
	 Introducing the Web API V2
	 NXQL Tutorial
	 NXQL language definition
	 NXQL Data Model

	Web API V1 (deprecated)
	 Publishing an investigation
	 The URL of Web API investigations
	 Processing the response of Web API investigations

	Examples and tools
	 Excel integration with NXQL
	 Integrating with SCCM
	 Integrating with ServiceNow
	 Integrating with HP ArcSight

